NOTE - EDA is not applicable to variable-capacity outdoor units!
1. General

1.1. Shipping and Packing List ... 2

1.2. Additional Parts Required .. 3

1.3. Introduction ... 3

1.3.1. ComfortSense® 7500 Thermostat ... 3

1.3.2. iComfort® Family of Thermostats .. 3

1.3.3. Operation Overview ... 3

1.3.4. Operation Notes ... 4

1.4. Wiring Diagram Locator .. 4

1.5. Decision Tree .. 5

1.6. Unit Dimensions .. 6

1.7. Installation Configuration .. 7

1.7.1. Horizontal and Up-flow ... 7

1.7.2. Down-flow .. 8

1.8. Component Functions ... 10

1.8.1. Charge Compensator ... 10

1.8.2. Check/Flow Restrictor ... 10

1.8.3. Valve Assembly ... 10

2. Installation ... 11

2.1. Information .. 11

2.1.1. Refrigeration ... 11

2.1.2. Releasing Air Charge .. 11

2.1.3. Refrigerant Line Connections .. 11

2.2. Electrical Wiring ... 11

2.3. Humiditrol Installation and Checkout Flow Chart 17

2.4. Leak Testing, Evacuating, Charging 18

2.4.1. 3-Way Diverting Valve Operation 18

2.4.2. Leak Testing, Evacuating, Charging 19

2.5. Insulating and Sealing the Unit ... 19

2.6. Other System Components .. 19

2.6.1. Blower Control .. 19

2.6.2. Thermostat and Sensor ... 19

3. Enabling Thermostats for Humiditrol .. 20

3.1. CS7500 Residential Thermostat ... 20

3.2. iComfort E30 and S30 Thermostats ... 21

3.3. iComfort M30 Thermostat ... 21

4. Modes of Operation .. 21

4.1. Dehumidification Mode (Cooling ON) 21

4.2. Cooling Mode (Dehumidification OFF) 22

4.3. Heating Mode (Heat Pump Applications) 22

5. Air Resistance ... 22

6. Thermostat Demand Signal ... 23

7. Checklist ... 24

<table>
<thead>
<tr>
<th>Table 1. Packing List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
1.2. Additional Parts Required

Separately-ordered components are restricted to those listed in the Product Specifications and the price book.

<table>
<thead>
<tr>
<th>Application specific</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Temperature Sensor (X2658)</td>
<td></td>
</tr>
<tr>
<td>75VA 24VAC indoor unit transformer (12P61) is required when the Humiditrol unit is installed with a two-stage heat pump system.</td>
<td></td>
</tr>
<tr>
<td>Humiditrol Insulation and Piping Kit (refer to “Figure 1. Decision Tree” on page 5).</td>
<td></td>
</tr>
<tr>
<td>Humiditrol Zoning Accessory (39W67). Required when installing in system with Harmony III zoning system.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Additional Parts

Humiditrol is compatible with the following Lennox thermostats:

Table 3. Compatible Lennox Thermostats

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComfortSense® 7500 thermostat (13H14)</td>
</tr>
<tr>
<td>iComfort® E30 Smart Thermostat (15S64)</td>
</tr>
<tr>
<td>iComfort® M30 Thermostat (15Z69)</td>
</tr>
<tr>
<td>iComfort® S30 Ultra Smart Thermostat (12U67)</td>
</tr>
</tbody>
</table>

IMPORTANT

The approved application for the Humiditrol unit is restricted to those listed in the Product Specifications and price book.

NOTE: Due to Lennox’ ongoing commitment to quality, features and options are subject to change without notice and without incurring liability. Improper installation, adjustment, alteration, service or maintenance can cause property damage or personal injury. Installation and service must be performed by a qualified installer and servicing agency.

1.3. Introduction

Humiditrol® is designed for installation with a Lennox HFC-410A split-system outdoor unit and an air handler or a furnace with a variable speed blower. It is designed for indoor installations only in either up-flow or horizontal air discharge applications.

NOTE: Humiditrol is not compatible with variable-capacity outdoor units!

- Humiditrol is for use only on HFC-410A systems with thermal expansion valve installed.
- Prior to installation, study the decision tree (see “Figure 1. Decision Tree” on page 5) to confirm that all application requirements for Humiditrol installation are met.
- Low ambient pressure switch type control option can be applied to this type of system down to 30°F. For low ambient kit part numbers, refer to the Product Specifications accessories section.

NOTE: The low ambient control option (down to 0°F) is not compatible with Humiditrol.

Before beginning installation, be sure the HVAC system components are compatible with the Humiditrol. See “Figure 1. Decision Tree” on page 5 for the system decision tree that describes compatible components of the system. One of the following thermostats is required for the Humiditrol system:

1.3.1. ComfortSense® 7500 Thermostat

NOTE: When wiring the thermostat into the system, be sure these requirements are met:

- Minimum 18 gauge thermostat wire is used.
- Maximum thermostat wire run length does not exceed 300 feet (90 m).
- Total load from any thermostat connection is less than 1 amp.

1.3.2. iComfort® Family of Thermostats

NOTE: When wiring the thermostat into the system, be sure these requirements are met:

- Minimum 18 gauge thermostat wire is used.
- Maximum thermostat wire run length does not exceed 1500 feet (455 m)
- Total load from any thermostat connection is less than 1 amp.

1.3.3. Operation Overview

NOTE: These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities having jurisdiction before installation.

- The Humiditrol unit operates to dehumidify, as required, when ambient temperatures are below 95°F.
- However, when temperatures reach 95°F, cooling and dehumidification demands are both serviced by increased cooling system run-time and does not use Humiditrol.
- Neither the CS7500 or any of the iComfort family of thermostats will activate Humiditrol when the ambient temperature is at or above 95°F.
- Prior to system checkout, consider the outdoor ambient temperature since the Humiditrol will not operate above 95°F.
- Plan testing to be conducted when temperatures are between 65°F and 95°F to ensure proper Humiditrol set up and checkout operation.
- Humiditrol removes moisture from the indoor air at a greater rate than cooling alone. On a call for dehumidification, the indoor blower is slowed down, the outdoor fan is operated at a lower speed, and the compressor is upstaged to high-stage operation (two-stage units). The indoor cooling coil now operates as a...
lower temperature removing additional humidity. At the same time, the Humiditrol
three-way valves reposition themselves and the Humiditrol coil becomes active.
This allows condenser heat to warm the indoor air to avoid excessive overcooling
of the home. During cooling only (no Humiditrol operation) the Humiditrol coil is
inactive.
• The Humiditrol coil is added to an HVAC system downstream of the indoor coil.
In dehumidification mode, the coil becomes an extension of the outdoor coil and
injects heat into the indoor air stream.
• This dehumidification mode allows significantly improved control of the humidity
in the conditioned space with less chance of overcooling the space.
• The assembly includes a set of 3-way diverting valves which will either route
refrigerant through the Humiditrol coil, or cause the refrigerant to bypass the that
coil, depending on the mode of operation.
1.3.4. Operation Notes
• Dehumidification will not occur when the outdoor temperature is at or above 95°F
or indoor temperature is at or below 65°F.
• When operating in cooling (or heat pump heating) mode, all temperatures and
pressures will be as in a normal system.
• When the thermostat is in Humiditrol mode, and after a cooling demand has been
satisfied but a dehumidification demand persists, and the room temperature is
within the MIN, MID, MAX parameters described in Using Humiditrol Comfort
Adjust (see “2.7. Using Humiditrol Comfort Adjust” on page 19), the air handlers
will operate at reduced airflow with the compressor at high speed.
• When the unit is in the dehumidification mode, the thermostat will display
“dehumify or an icon” on the home screen.

IMPORTANT
The Clean Air Act of 1990 bans the intentional venting of all refrigerants (CFC,
HFC, and HCFC) as of July 1, 1992. Approved methods of recovery, recycling
or reclaiming must be followed. Fines and/or incarceration may be levied for
non-compliance

WARNING
Improper installation, adjustment, alteration, service or maintenance can cause
property damage, personal injury or loss of life.
Installation and service must be performed by a licensed professional HVAC
installer (or equivalent) or a service agency.

WARNING
Risk of explosion or fire.
Can cause injury or death.
Recover all refrigerant to relieve pressure before opening the system.

1.4. Wiring Diagram Locater

<table>
<thead>
<tr>
<th>Thermostat</th>
<th>Indoor Unit Control</th>
<th>Outdoor Unit Control</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComfortSense 7500 or iComfort M30</td>
<td>Non-communicating</td>
<td>Non-communicating</td>
<td>“Figure 11. CS7500 or M30 with any Non-Communicating Indoor and Outdoor Units” on page 12.</td>
</tr>
<tr>
<td>ComfortSense 7500 or iComfort M30</td>
<td>Non-communicating</td>
<td>Lennox Communicating wired as 24VAC Conventional</td>
<td>“Figure 12. CS7500 or M30 with Non-Communicating Indoor and Communicating Outdoor Units Wired for Non-Communicating” on page 13.</td>
</tr>
<tr>
<td>ComfortSense 7500 or iComfort M30</td>
<td>Lennox Communicating wired as non-communicating</td>
<td>Lennox Communicating wired as non-communicating</td>
<td>“Figure 13. CS7500 or M30 with Communicating Indoor and Outdoor Units with Both Wired Non-Communicating” on page 14.</td>
</tr>
<tr>
<td>iComfort E30</td>
<td>Lennox Communicating wired as non-communicating</td>
<td>Lennox Communicating wired as non-communicating</td>
<td>“Figure 14. E30 with both Indoor and Outdoor Communicating Units Wired for Non-Communicating” on page 15.</td>
</tr>
<tr>
<td>iComfort S30</td>
<td>Lennox Communicating</td>
<td>Lennox Communicating</td>
<td>“Figure 15. S30 Wired System for Communicating” on page 16.</td>
</tr>
</tbody>
</table>
1.5. Decision Tree

START

Yes

Zoning application? **No**

Yes

Comfort E30, M30 or ComfortSense 7500?

Yes

Harmony III™ Zoning System **No**

Application Not Approved **DO NOT INSTALL**

Is selection a certified AHRI rated system? (https://www.ahridirectory.org)

Yes

Install System

Order Humiditrol® Zoning Accessory (HZA) Kit (39W67)

Refer to Installation Instruction, "Installing The Humiditrol® Enhanced Dehumidification Accessory (EDA) In A Harmony III™ Zoning System Using The Humiditrol® Zoning Accessory".

No

Select different equipment

Select EDA

X = PREFERRED MATCH-UP
A = ALLOWED FOR PHYSICAL MATCH-UP TO INDOOR COIL

Select Piping Kit

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Type</th>
<th>Outdoor Unit Model</th>
<th>Piping Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>018 AC</td>
<td>13ACXN, 14ACX, EL10XN1, ML14XN1, X10XN, X14</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>024 AC</td>
<td>13ACXN, 14ACX, ML14XN1, SL18XN1, X10XN, X14, XC13N, XC14, XC21</td>
<td>98M22</td>
<td></td>
</tr>
<tr>
<td>030 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X14</td>
<td>98M22</td>
<td></td>
</tr>
<tr>
<td>042 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>054 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>060 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
</tbody>
</table>

Select EDA

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Type</th>
<th>Outdoor Unit Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>024 AC</td>
<td>14HPX, EL15XN1, ML14XN1, ML16XN1, X14</td>
<td>98M22</td>
</tr>
<tr>
<td>030 AC</td>
<td>14HPX, EL15XN1, ML14XN1, SL18XN1, X14</td>
<td>98M22</td>
</tr>
<tr>
<td>042 AC</td>
<td>14HPX, EL15XN1, ML14XN1, SL18XN1, X14, X16</td>
<td>98M62</td>
</tr>
<tr>
<td>054 AC</td>
<td>14HPX, EL15XN1, ML14XN1, SL18XN1, X14</td>
<td>98M62</td>
</tr>
<tr>
<td>060 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X14, X16, X18XN1, X21</td>
<td>98M22</td>
</tr>
</tbody>
</table>

Select Piping Kit

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Type</th>
<th>Outdoor Unit Model</th>
<th>Piping Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>018 AC</td>
<td>13ACXN, 14ACX, EL10XN1, ML14XN1, X10XN, X14</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>024 AC</td>
<td>13ACXN, 14ACX, ML14XN1, SL18XN1, X10XN, X14</td>
<td>98M22</td>
<td></td>
</tr>
<tr>
<td>030 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X14</td>
<td>98M22</td>
<td></td>
</tr>
<tr>
<td>042 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>054 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
<tr>
<td>060 AC</td>
<td>13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X10XN, X13N, X14, XC13N, XC14, XC16, XC21</td>
<td>98M62</td>
<td></td>
</tr>
</tbody>
</table>

iComfort® E30, M30 or ComfortSense 7500?

Yes

Select indoor coil

Must use one of these outdoor units:

- CBX25UHV
- CBX27UHE
- CBX38MV
- CBX27UMV
- CBX27UDV
- CBX27UHV
- CBX27UH
- CBX27UHV
- CBX27UHV
- CBX27UHV

No

Not applicable to variable-capacity outdoor units!

13ACXN, 14ACX, 16ACXN, ML14XN1, SL18XN1, X14

14HPX, 16HPX, EL15XN1, ML14XN1, ML16XN1, SL18XN1, X14, X16, X18XN1, X21

14HPX, 16HPX, EL15XN1, ML14XN1, SL18XN1, X14

16ACX, XC16

14HPX, XC16

16ACX, XC16

14HPX, XC16

16ACX, XC16

Select different equipment

NOT − AIR HANDLER REQUIRES FIELD-FABRICATED TRANSITION BETWEEN BLOWER OUTLET AND EDA COIL.

If furnace

Select indoor coil

Must use one of these variable speed indoor units:

- CBX25UHV
- CBX27UHE
- CBX38MV
- CBX27UMV
- CBX27UDV
- CBX27UHV
- CBX27UH
- CBX27UHV
- CBX27UHV
- CBX27UHV

NOTE − AIR HANDLER REQUIRES FIELD-FABRICATED TRANSITION BETWEEN BLOWER OUTLET AND EDA COIL.

Downflow

NOTE − REQUIRES ADDITIONAL FIELD-FABRICATED SUPPORT FRAME AND TRANSITION; SEE INSTALLATION SUPPLEMENT, "Installing Humiditrol® Unit in Downflow Configuration".

Upflow/Horizontal

NOTE − AIR HANDLER REQUIRES FIELD-FABRICATED TRANSITION BETWEEN BLOWER OUTLET AND EDA COIL.

Downflow

NOTE − REQUIRES ADDITIONAL FIELD-FABRICATED SUPPORT FRAME AND TRANSITION; SEE INSTALLATION SUPPLEMENT, "Installing Humiditrol® Unit in Downflow Configuration".

Upflow/Horizontal

NOTE − AIR HANDLER REQUIRES FIELD-FABRICATED TRANSITION BETWEEN BLOWER OUTLET AND EDA COIL.

How installed?

Install System
1.6. Unit Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>EDA-024B</th>
<th>EDA-036C</th>
<th>EDA-060D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17-1/2 (445)</td>
<td>21 (533)</td>
<td>24-1/2 (622)</td>
</tr>
<tr>
<td>B</td>
<td>12-1/4 (311)</td>
<td>12-1/4 (311)</td>
<td>14 (356)</td>
</tr>
<tr>
<td>C</td>
<td>16-1/8 (422)</td>
<td>19-5/8 (498)</td>
<td>23-1/8 (587)</td>
</tr>
<tr>
<td>D</td>
<td>16-1/8 (422)</td>
<td>19-5/8 (498)</td>
<td>23-1/8 (587)</td>
</tr>
<tr>
<td>E</td>
<td>1-3/8 (35)</td>
<td>3-1/8 (79)</td>
<td>4-7/8 (124)</td>
</tr>
<tr>
<td>F</td>
<td>3-1/8 (79)</td>
<td>4-7/8 (124)</td>
<td>6-5/8 (168)</td>
</tr>
<tr>
<td>G</td>
<td>3 (76)</td>
<td>3-1/4 (83)</td>
<td>4-3/4 (121)</td>
</tr>
</tbody>
</table>

Check/Flow Restrictor to Vapor Line Tee

Air Flow

Liquid Line to Indoor TXV

Liquid Line From Outdoor Unit

11/16 (17)

20-3/4 (527)

22-1/4 (565)

11/16 (17)

1-7/16 (37)

11/16 (17)

Figure 2. Unit Dimensions
1.7. **Installation Configuration**

1.7.1. **Horizontal and Up-flow**

![Diagram of Horizontal and Up-flow Installation](image)

NOTES:
1. Transition is required for all air handlers; dimension width and depth is dependent upon the air handler and the Humiditrol model used.
2. Transition is required between indoor coil and 5-ton Humiditrol unit when used with a small profile furnace.

Alternate installation position information - The Humiditrol coil is not position sensitive as long as the correct air flow direction through the coil is maintained. See Unit Dimensions drawing on page 3 for correct air flow.

Figure 3. **Installation Arrangements (Horizontal and Up-flow)**

EDA-024B: 12-1/2"
EDA-036C: 12-1/2"
EDA-060D: 14"

Varies by indoor coil model; see Lennox Product Specifications.

Varies by air handler model; see Lennox Product Specifications for dimensions.

12" (min.)

The Humiditrol coil is not position sensitive as long as the correct air flow direction through the coil is maintained. See Unit Dimensions drawing on page 3 for correct air flow.
1.7.2. **Down-flow**

This accessory is designed for indoor installations in either up-flow or horizontal air discharge applications, however, the unit will function in the down-flow configuration, provided the instructions contained herein are followed.

Figure 4. Typical Down-flow Configurations for both Air Handler and Gas Furnace
NOTE - The weight of the indoor coil and furnace MUST be supported by the field-constructed support stand - NOT by transition and Humiditrol coil.

Field construct the brackets.
CAUTION! When determining where holes in the units are to be located and the length of screws to be used, be sure internal components will not be jeopardized or damaged during assembly.

NOTE - Coil weight must not rest on transition.

Using the field-constructed brackets, assemble EDA transition, and indoor coil, fastening the brackets to the coil and Humiditrol units with field-supplied screws.

Move assembled lower package into position (for example, in the a/c closet).

If location permits, and for better stability, fasten rear support stand bracket to a wall.

Install and fasten return air plenum to the top of the unit and secure to wall(s); this will ensure the assembly does not tilt forward.

Study the installation site carefully before beginning installation. These instructions are intended to show a typical application. Because most sites are different, use this information as a general guide, making adjustments if and when necessary, observing all cautions and notes, and following appropriate ordinances and regulations.
1.8. Component Functions

1.8.1. Charge Compensator

The charge compensator included in the Installation and Piping kit as shown in “Figure 17. Typical Installation (Horizontal Air Handler Shown)” on page 18 serves to maintain the proper amount of refrigerant circulating in certain systems. *(Some systems do not require a charge compensator, but do require a similar Installation and Piping kit to connect into the system [see Product Specifications]).*

The charge compensator stores excess refrigerant when the Humiditrol coil is active (dehumidifying) and returns it to the system during normal cooling or heating operations. When the Humiditrol coil is active, less charge is required to obtain the proper amount of sub-cooling because of the additional coil surface and the cooler air which passes over the Humiditrol coil.

1.8.2. Check/Flow Restrictor

The check function of the check/flow restrictor (shown in Figure 9) prevents refrigerant from flowing into the inactive components during times when the Humiditrol coil is inactive. The flow restrictor controls the rate of return of charge to the system from the charge compensator and the Humiditrol coil when the system changes from "Humiditrol coil active" to "Humiditrol coil inactive."

1.8.3. Valve Assembly

The first valve of the diverting valve assembly (figure 10, E) directs the flow of refrigerant to either bypass the Humiditrol coil (Humiditrol coil is inactive) or pass through the Humiditrol coil (Humiditrol coil is active). The second valve (figure 10 F) directs the flow of refrigerant back to the liquid line when the first valve (E) allows flow through the Humiditrol coil. When the Humiditrol coil is inactive, the second valve (F) provides a vent path to the suction line, draining the Humiditrol coil and charge compensator of liquid refrigerant.

![Diagrams of Check/Flow Restrictor Operation and Humiditrol Unit Parts Arrangement](images/10.png)
2. INSTALLATION

2.1. Information

WARNING
Risk of property damage, injury, or death. Installation, adjustments, alterations, service and maintenance must be performed by a licensed professional service technician (or equivalent).

CAUTION
Physical contact with metal edges and corners while applying excessive force or rapid motion can result in personal injury. Be aware of, and use caution when working nearby these areas during installation or while servicing this equipment.

CAUTION
The Humiditrol coil is shipped from the factory pressurized with dry air. Pierce a hole in the coil’s rubber plug vapor line seal to relieve the pressure before removing the seals.

2.1.1. Refrigeration
All Humiditrol coils are shipped with a combination check/flow restrictor. The restrictor is provided in the bag assembly and must be installed. Refer to the appropriate high and/or low side installation instructions for information on the appropriate line sets. Refer to Lennox Refrigerant Piping guide (Corp. 9351-L9) for proper size, type, and application of field-fabricated lines.

2.1.2. Releasing Air Charge
NOTE: Humiditrol units are shipped from the factory with dry air as a holding charge.

1. Ensure that the coil is void of pressure.
2. Remove the rubber plug from the lines.
3. If there is no pressure when the plugs are pierced, check the unit for leaks before continuing with the installation.

2.1.3. Refrigerant Line Connections
When connecting lines, be careful to avoid damaging the 3-way diverting valve access panel. Place a wet rag against the piping plate and around the Humiditrol unit line connections. A wet rag heat shield must be in place during brazing to guard against damage to the paint.

2.2. Electrical Wiring
Review the diagrams before installation to ensure all necessary components are on hand at time of installation.
Connect the Humiditrol unit with the indoor and outdoor units, and to the thermostat. Be sure that the outdoor sensor is installed and connected to the ComfortSense 7500 thermostat’s outdoor sensor terminal block or that discharge air and/or outdoor air sensors are connected to the iComfort indoor unit. The table below each wiring diagram shows the requirements for control wiring.
The iComfort thermostat can use the outdoor sensor factory supplied and connected in iComfort outdoor units.
Figure 11. CS7500 or M30 with any Non-Communicating Indoor and Outdoor Units
Operation sequence for dehumidification

1. REMOVE 24 VOLS FROM DH AND OR DS
2. THERMOSTAT CYCLES OUTDOOR UNITS TO Y2
3. INDOOR AND OUTDOOR FAN SPEEDS REDUCED

NUMBER OF WIRES REQUIRED

<table>
<thead>
<tr>
<th>System Type</th>
<th>Humiditrol</th>
<th>EDA</th>
<th>CS7500 and iComfort</th>
<th>Outdoor Unit</th>
<th>M30</th>
<th>Outdoor Air Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-stage AC</td>
<td>7</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-stage AC</td>
<td>8</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-stage HP</td>
<td>9</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-stage HP</td>
<td>10</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTDOOR UNITS (A175) - WIRE EITHER CONTROL IDENTICALLY CURRENT CONTROL

EARLIER MODEL VALVE ACTUATOR

LATER MODEL VALVE ACTUATOR

Figure 12. CS7500 or M30 with Non-Communicating Indoor and Communicating Outdoor Units Wired for Non-Communicating
Figure 13. CS7500 or M30 with Communicating Indoor and Outdoor Units with Both Wired Non-Communicating
Operation sequence for dehumidification

1. REMOVE 24 VOLTS FROM DH AND/OR DS
2. THERMOSTAT CYCLES OUTDOOR UNITS TO Y2
3. INDOOR AND OUTDOOR FAN SPEEDS REDUCED

Table: Number of wires required

<table>
<thead>
<tr>
<th>System Type</th>
<th>Humiditrol EDA</th>
<th>iComfort E30</th>
<th>Outdoor unit</th>
<th>Air Sensors (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-stage AC</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2-stage AC</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1-stage HP</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2-stage HP</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Trace cut for Humiditrol (EDA) application

- DS—R JUMPER - MUST BE CUT FOR HUMIDITROL OPERATION. SEE W1 JUMPER DETAIL
- DS—R TRACE - MUST BE CUT FOR HUMIDITROL OPERATION. SEE TRACE CUT DETAIL

Figure 14. E30 with both Indoor and Outdoor Communicating Units Wired for Non-Communicating
OUTDOOR UNITS (A175) - WIRE EITHER CURRENT IDENTICALLY
CURRENT CONTROL

IN COMMUNICATING SYSTEM, THERMOSTAT DS
INPUT IS NOT USED AND DEHUMIDIFICATION IS
CONTROLLED VIA DEHUMIDIFICATION RELAY THAT
CONTROLS 24VAC OUTPUT ON DH TERMINAL.

NUMBER OF WIRES REQUIRED—Indoor unit to:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Humiditrol EDA</th>
<th>iComfort S30</th>
<th>Outdoor unit</th>
<th>Discharge</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-stage AC</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2-stage AC</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1-stage HP</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2-stage HP</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operation sequence for dehumidification
1. REMOVE 24 VOLTS FROM DH AND/OR DS
2. THERMOSTAT CYCLES OUTDOOR UNITS TO Y2
3. INDOOR AND OUTDOOR FAN SPEEDS REDUCED

MAXIMUM TOTAL LENGTH OF ALL CONNECTIONS ON THE RSBUS IS LIMITED TO 1500FT. WIRE GAUGE OF RSBUS WIRE IS 18.

Lennox Communicating FURNACE (IFC) OR AIR HANDLER (AHC)

Figure 15. S30 Wired System for Communicating
2.3. Humiditrol Installation and Checkout Flow Chart

Following the procedures reference in this section when installing the Humiditrol and associated components.

Table 5. Required Parts for Specific Applications

<table>
<thead>
<tr>
<th>Required Parts</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any non-zoning AC or Single Stage HP</td>
</tr>
<tr>
<td>Humiditrol Unit with check/flow restrictor and label</td>
<td>Yes</td>
</tr>
<tr>
<td>Thermostats: ComfortSense® 7500, iComfort® E30, M30 and S30 Smart Thermostat</td>
<td>All</td>
</tr>
<tr>
<td>Outdoor Sensor (X2658, for non-communicating outdoor units)</td>
<td>Yes</td>
</tr>
<tr>
<td>Insulation and Piping Kit</td>
<td>Yes</td>
</tr>
<tr>
<td>75VA Transformer (12P61)</td>
<td>—</td>
</tr>
<tr>
<td>Humiditrol Zoning Accessory (39W67)</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE: After confirming that all required parts per this table are available, proceed with installation.

NOTE: We recommend that for all full communicating systems that the iHarmony® zoning system is used.

Figure 16. Humiditrol Installation and Checkout Flow Chart

NOTE - Lennox communicating systems support iHarmony zoning system only. Cannot use Harmony III in total communicating system.
2.4. Leak Testing, Evacuating, Charging

IMPORTANT

The 3-way diverting valve actuator shaft pinch bolt (see “Figure 19. Setting 3-Way Diverting Valve to Evacuate Position” on page 19) is factory set and is not to be adjusted.
2.4.2. Leak Testing, Evacuating, Charging

1. Set the 3-way diverting valve actuator shaft to the center (evacuate) position for leak testing and evacuation as illustrated in the following figure. IMPORTANT! The actuator shaft must be set as described to allow the Humiditrol to evacuate more quickly.

2. Refer to instructions provided with the outdoor unit for leak testing, evacuating and charging procedures

3. Very little charge is required for the additional volume of the Humiditrol unit. When in normal cooling, the components will all be occupied by vapor that has very little weight. At most (depending on the model) an additional 1/4 pound of refrigerant may be required.

4. When shifting from dehumidify mode to cooling, or vice-versa, wait at least 10 minutes for the system to reach stable operating pressure before checking temperatures and pressures, or adjusting refrigerant charge.

NOTE: Prior to starting the outdoor unit for charging, set the thermostat to call for cooling (dehumidification OFF). It will take about 90 seconds for the 3-way diverting valve to energize and shift to the cooling position. To ensure that the 3-way diverting valve is energized and in the “cooling” (forward) position, observe the position of the 3-way diverting valve actuator shaft pinch bolt in the following figure; if properly shifted, the pinch bolt will be in the forward position.

5. The charge must be checked with the system in cooling operation (dehumidification OFF). After testing and charging as required, set the thermostat to force a demand for dehumidification.

2.5. Insulating and Sealing the Unit

IMPORTANT

All piping, metering devices, and connections must be insulated to prevent moisture damage caused by sweating.

Seal the unit so that warm air is not allowed into the cabinet. This is especially important when the unit is installed in an unconditioned area. Make sure the liquid line entry points are sealed with either refrigerant tube insulating material or with Permagum.

2.6. Other System Components

2.6.1. Blower Control

When Humiditrol units are to be applied with an indoor unit that has a variable speed motor (VSM), then refer to the indoor unit installation instruction for setting blower speed.

2.6.2. Thermostat and Sensor

Refer to the ComfortSense 7500, iComfort E30, M30 or S30 Thermostat Installation and Setup Guide for non-communicating installation, wiring, and setup.

NOTE: Lennox communicating outdoor units have an outdoor sensor installed. If these units are connected to a Lennox communicating thermostat, an optional outdoor sensor is not needed.

IMPORTANT

Either a CS7500 or iComfort family thermostat along with a properly connected outdoor temperature sensor are required for the Humiditrol unit to function properly.

Install the remote sensor on the outside of a northern wall of the home, away from direct sunlight or other heat sources that may affect its ability to accurately sense outdoor temperature.

2.7. Using Humiditrol Comfort Adjust

If Humiditrol is enabled in the installer settings, then the Humiditrol Adjustment in the User Settings affects overcooling operation (see “Table 6. Humiditrol Comfort Adjust Parameters” on page 20 and “Figure 20. Thermostat Operation with Humiditrol Enabled” on page 20 describe the parameters and illustrate Humiditrol operation under typical settings).
Overcooling ranges from 2°F below the cooling setpoint (MIN setting) down to 2°F above the heating setpoint (MAX setting). Halfway between the two settings is the MID setting.

<table>
<thead>
<tr>
<th>Humiditrol Comfort Adjust parameters</th>
<th>Indoor temperature is greater than:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum overcooling</td>
<td>2% above heating setpoint</td>
</tr>
<tr>
<td>Midpoint overcooling</td>
<td>Heat Setpoint + Cool Setpoint</td>
</tr>
<tr>
<td>Minimum overcooling</td>
<td>2°F below cooling setpoint</td>
</tr>
</tbody>
</table>

Table 6. Humiditrol Comfort Adjust Parameters

2.8. Dehumidification Requirements

Humiditrol can only operate when the thermostat is set to COOL or AUTO and meets the parameters described in the following table. If the thermostat is set to HEAT mode, no dehumidification will occur! Thermostat cycles heating ON and OFF to maintain heating setpoint.

<table>
<thead>
<tr>
<th>Thermostat Operation with Humiditrol Enabled</th>
<th>Humiditrol mode overcooling will only occur if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermostat set to COOL mode</td>
<td>Outdoor sensor on room thermostat installed and setup</td>
</tr>
<tr>
<td>Dehumidification enabled on installer settings</td>
<td>Dehumidification enabled on installer settings</td>
</tr>
<tr>
<td>Dehumidification demand is present</td>
<td>Dehumidification demand is present</td>
</tr>
<tr>
<td>Cooling demand is not present</td>
<td>Cooling demand is not present</td>
</tr>
<tr>
<td>Outdoor temperature is less than 95°F</td>
<td>Outdoor temperature is less than 95°F</td>
</tr>
<tr>
<td>Indoor temperature is not cooler than 65°F</td>
<td>Indoor temperature is not cooler than 65°F</td>
</tr>
<tr>
<td>In this case, 24VAC is removed from the Humiditrol “D” terminal and cooling begins (Indoor variable speed motor runs at dehumidification speed and outdoor unit begins the cooling cycle). Cooling calls have priority over Humiditrol calls.</td>
<td>Humiditrol mode overcooling is user adjustable and is described in Using Humiditrol Comfort Adjust.</td>
</tr>
</tbody>
</table>

Table 7. Thermostat Operation with Humiditrol Enabled

3. ENABLING THERMOSTATS FOR HUMIDITROL

3.1. CS7500 Residential Thermostat

1. Touch menu option from the home screen.
2. Touch and hold the settings option on the menu. This will display the installer settings confirmation screen. Touch confirm to continue.

A selection option under Installer settings > Humidity settings > Dehumidify > Dehumidify mode must be enabled before the user will have control over the humidity. The mode selected determines how the user can adjust the relative humidity (RH). The installer settings include:

1. NORMAL
2. MAX
3. AUXILIARY DEHUMIDIFIER
4. HUMIDITROL
5. OFF

Installing Outdoor Sensor

Install the optional (purchase separately) outdoor sensor on a northern wall of the home, away from direct sunlight or other heat sources that may affect its sensitivity.

NOTE - The outdoor sensor uses standard thermostat wiring; it may be wired using two wires of a multi-wire cable with a wire run not to exceed 300 feet or 100 meters.

1. Connect outdoor sensor to terminals Te and To on thermostat.
2. Outdoor sensor also has to be enabled under menu > settings > outdoor sensor = yes or no.
3.2. iComfort E30 and S30 Thermostats

The thermostat must be configured to properly operate the Humiditrol as follows:
1. Touch the menu option in the upper-right hand corner.
2. Touch the settings icon.
3. From the menu along the left side of the screen touch the advanced settings option.
4. Touch view dealer control center.
5. Warning message will appear, read and touch proceed.
6. From the dealer control center screen, touch equipment.
7. From the menu along the left side of the screen touch add/remove equipment.
8. Touch Humiditrol under the Dehumidifier option.
 A check mark will indicate it has been selected.
9. Go to Equipment > Smart Hub and go down the list until you reach Humiditrol Comfort Adjust.

Options are Maximum Overcooling, Midpoint Overcooling and Minimum Overcooling. Default is Maximum Overcooling.

- Maximum Overcooling: Indoor temperature > (greater than) 2°F above heating setpoint.
- Midpoint Overcooling: Indoor temperature > (greater than) HEAT setpoint + COOL setpoint / 2.
- Minimum Overcooling: Indoor temperature > (greater than) 2°F below cooling setpoint.

Maximum allowed set point for humidification. Range is 15 to 45%. Default is 45%. Adjustments

Figure 22. E30 and S30 Thermostats—Add and Adjust Humiditrol

3.3. iComfort M30 Thermostat

The thermostat must be configured to properly operate the Humiditrol as follows:
1. Touch the menu option in the upper-right hand corner.
2. Touch the settings icon.
3. From the menu touch the advanced settings option.
4. Touch humidity option. Under Humidity Control, select dehumidify to enable dehumidification. By default it is disabled.
5. There are four setting options which are Normal, Max, Humiditrol* and Aux Dehumidifier (requires hardware accessory installed). Slide bar adjust with a range of 40% to 60% RH.
6. For further details concerning the normal or max setting and normal and max dew point control, refer to the iComfort M30 Installation and Setup Guide.

Figure 23. M30 Thermostat—Add and Adjust Humiditrol

4. Modes of Operation

4.1. Dehumidification Mode (Cooling ON)

If the room thermostat’s cooling demand has been satisfied but the dehumidification setting has not been satisfied, the unit continues to run in dehumidification mode. The room thermostat sends a signal to the Humiditrol unit’s 3-way diverting valve assembly to begin operating in the dehumidification mode.

Figure 24 shows refrigerant flowing from the outdoor unit, entering the Humiditrol, passing through the first 3-way diverting valve, then entering the Humiditrol coil. The heat from the warm refrigerant is transferred into the indoor air stream. The refrigerant exits the coil through the second 3-way diverting valve and into the indoor coil expansion valve.

During dehumidification, the indoor air blower (and outdoor fan, if an outdoor relay is used) operates at a lower air volume. The cool, dehumidified air leaving the indoor coil is warmed as it passes over the Humiditrol coil. Air temperature rise across the Humiditrol coil can be from 10° to 25°F, depending on the operating ambient and air-conditioned space conditions.

The warm vapor-liquid-refrigerant mixture entering the Humiditrol unit from the outdoor unit will be sub-cooled in the Humiditrol unit and enter the expansion valve at a lower than normal temperature. Liquid temperatures can be in the 65° to 70°F range, with a 10° to 40°F temperature change across the Humiditrol.

Figure 24. Dehumidification Cycle with Humiditrol Coil Active (Model EDA-036C Shown)
4.2. Cooling Mode (Dehumidification OFF)

The following figure illustrates refrigerant flow in cooling mode (dehumidification mode OFF). The liquid refrigerant from the outdoor unit enters the Humiditrol module. Since there is no demand for dehumidification, the 3-way diverting valve assembly directs the flow back out of the Humiditrol module to the indoor unit expansion valve.

![Diagram of Cooling Cycle with Humiditrol Coil Inactive (Model EDA-036C Shown)](image)

Figure 25. Cooling Cycle with Humiditrol Coil Inactive (Model EDA-036C Shown)

4.3. Heating Mode (Heat Pump Applications)

The following figure illustrates refrigerant flow in the heating mode. In heat pump application heating mode, a system that includes an Humiditrol unit will operate as a conventional heat pump. The Humiditrol unit does not operate in this mode.

![Diagram of Heat Pump Heating Cycle with Humiditrol Coil Inactive (Model EDA-036C Shown)](image)

Figure 26. Heat Pump Heating Cycle with Humiditrol Coil Inactive (Model EDA-036C Shown)

5. Air Resistance

The following table shows air volume and total air resistance for the available Humiditrol models.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Air Volume</th>
<th>Total Air Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfm</td>
<td>L/s</td>
</tr>
<tr>
<td>EDA-024B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>190</td>
<td>0.05</td>
</tr>
<tr>
<td>600</td>
<td>285</td>
<td>0.10</td>
</tr>
<tr>
<td>800</td>
<td>380</td>
<td>0.15</td>
</tr>
<tr>
<td>1000</td>
<td>470</td>
<td>0.22</td>
</tr>
<tr>
<td>EDA-036C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>285</td>
<td>0.05</td>
</tr>
<tr>
<td>800</td>
<td>380</td>
<td>0.08</td>
</tr>
<tr>
<td>1000</td>
<td>470</td>
<td>0.11</td>
</tr>
<tr>
<td>1200</td>
<td>565</td>
<td>0.15</td>
</tr>
<tr>
<td>1400</td>
<td>660</td>
<td>0.20</td>
</tr>
<tr>
<td>1600</td>
<td>755</td>
<td>0.10</td>
</tr>
<tr>
<td>1800</td>
<td>850</td>
<td>0.11</td>
</tr>
<tr>
<td>2000</td>
<td>945</td>
<td>0.13</td>
</tr>
<tr>
<td>2200</td>
<td>1040</td>
<td>0.15</td>
</tr>
<tr>
<td>EDA-060D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>470</td>
<td>0.06</td>
</tr>
<tr>
<td>1200</td>
<td>565</td>
<td>0.08</td>
</tr>
<tr>
<td>1400</td>
<td>660</td>
<td>0.10</td>
</tr>
<tr>
<td>1600</td>
<td>755</td>
<td>0.11</td>
</tr>
<tr>
<td>1800</td>
<td>850</td>
<td>0.13</td>
</tr>
<tr>
<td>2000</td>
<td>945</td>
<td>0.15</td>
</tr>
<tr>
<td>2200</td>
<td>1040</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Note: In Cooling Mode, no air temperature change across EDA coils. In Heating Mode, no liquid line temperature change across EDA coils. Charge compensator and 1/4" line not required on all systems. See Product Specifications.
6. Thermostat Demand Signal

Table 9. Demand Signals - Humiditrol

<table>
<thead>
<tr>
<th>Operating Sequence</th>
<th>System Demand</th>
<th>Relative Humidity</th>
<th>Blower CFM (Cool) %</th>
<th>System Response</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Y1</td>
<td>Y2</td>
<td>O</td>
<td>G</td>
<td>Status</td>
</tr>
<tr>
<td>System Type</td>
<td>Step</td>
<td>System Demand</td>
<td>Thermostat Demand</td>
<td>Compr</td>
<td>Blower CFM (Cool) %</td>
</tr>
<tr>
<td>Single-stage outdoor unit</td>
<td>1</td>
<td>ON</td>
<td>(na)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Two-stage outdoor unit Y1</td>
<td>1</td>
<td>ON</td>
<td>(na)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Two-stage outdoor unit Y2</td>
<td>2</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Single-stage outdoor unit</td>
<td>1</td>
<td>ON</td>
<td>(na)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Two-stage outdoor unit Y1</td>
<td>1</td>
<td>ON</td>
<td>(na)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Two-stage outdoor unit Y2</td>
<td>2</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Single-stage outdoor unit</td>
<td>1</td>
<td>ON</td>
<td>(na)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Two-stage outdoor unit Y2</td>
<td>2</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

NOTE: * Blower CFM speed (percentage) will vary depending on selected indoor equipment (furnace, coil blower, etc.).
Table 10. Checklist

<table>
<thead>
<tr>
<th>Y*</th>
<th>Checkpoint</th>
<th>What to Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outdoor Temperature Sensor</td>
<td>Wiring</td>
<td>Confirm outdoor temperature sensor is connected (connects directly to ComfortSense 7500; in communicating systems, sensor is in outdoor unit and must be connected to indoor unit (see wiring diagrams).</td>
</tr>
<tr>
<td></td>
<td>CS7500</td>
<td>Humiditrol Installer Settings</td>
<td>Confirm HUMIDITROL is enabled (see “Figure 21. ComfortSense 7500 Thermostat—Add and Adjust Humiditrol” on page 20).</td>
</tr>
<tr>
<td></td>
<td>CS7500</td>
<td>Humiditrol User Settings</td>
<td>Confirm HUMIDITROL - Dehumidify - ON is selected (see “Figure 21. ComfortSense 7500 Thermostat—Add and Adjust Humiditrol” on page 20). Confirm Relative Humidity setting (see “Figure 21. ComfortSense 7500 Thermostat—Add and Adjust Humiditrol” on page 20).</td>
</tr>
<tr>
<td></td>
<td>iComfort E30, M30 and S30 Thermostats</td>
<td>Humiditrol Installer Settings</td>
<td>Confirm HUMIDITROL is installed and adjusted.</td>
</tr>
<tr>
<td></td>
<td>Indoor Unit</td>
<td>Variable-Speed Blower Settings</td>
<td>Confirm Settings for “D”: CFM = 60% to 82% of second-stage cool.</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>Charge Compensator</td>
<td>Confirm insulation is properly installed.</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>Liquid Line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>Vent Line to Suction Line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charge Compensator</td>
<td>1/4" Line</td>
<td>Confirm 1/4" port oriented downward to lowest point</td>
</tr>
<tr>
<td></td>
<td>Check/Flow Restrictor</td>
<td>3/8" Line</td>
<td>Confirm restrictor installed/oriented properly.</td>
</tr>
<tr>
<td></td>
<td>System Charge</td>
<td>Refrigerant</td>
<td>With unit running in cooling mode, check and confirm system is properly charged (see outdoor unit installation instructions).</td>
</tr>
<tr>
<td></td>
<td>Outdoor Unit</td>
<td>Fan Relay</td>
<td>If non-communicating outdoor unit with variable speed outdoor fan. Confirm relay is installed properly.</td>
</tr>
<tr>
<td></td>
<td>Outdoor Unit</td>
<td>EDA Label</td>
<td>Confirm label is installed in prominent location and will be easily visible during servicing.</td>
</tr>
</tbody>
</table>

NOTE: System will NOT operate in dehumidification mode with outdoor temperature at or above 95°F.

| Operational Status | Dehumidification Mode | Record supply air temperature and confirm that temperature is higher than in cooling mode. |
| Operational Status | Dehumidification Mode | On units with variable speed outdoor fan, check that fan operates at approximately 250 RPM (lowest speed). |