WARNING
Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent or service agency.

CAUTION
As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

Table Of Contents

Dimensions ... Page 2
Shipping and Packing List Page 4
General ... Page 4
Requirements .. Page 4
Unit Support .. Page 5
Duct Connection Page 5
Rigging Unit For Lifting Page 6
Condensate Drains Page 6
Electrical Connections Page 8
Unit Power-Up Page 9
Blower Operation and Adjustments Page 10
Heating Start-Up Page 18
Cooling Start-Up Page 18
Defrost Control Board Page 21
KHA Belt Drive Supply Air Inverter Start-Up Page 22
KHB Belt Drive Supply Air Inverter Start-Up Page 24
Direct Drive Supply Air Blower Start-Up Page 26
Service ... Page 27

RETAIN THESE INSTRUCTIONS FOR FUTURE REFERENCE

KHA092, 102, 120, 150 & KHB092, 102, 122 PARTS ARRANGEMENT

![Diagram of HEAT PUMP PACKAGED UNITS]

KHA/KHB092 (7-1/2 TON)
KHA/KHB102 (8-1/2 TON)
KHA120 (10 TON)
KHB122 (10 TON)
KHA150 (12-1/2 TON)

HEAT PUMP PACKAGED UNITS
506914-02
6/2018
Supersedes 3/2018
KHA150 & KHB122 DIMENSIONS

END VIEW

60-1/8 (1527) BASE

BOTTOM POWER ENTRY
5-1/2 (140) Dia.

6-1/8 (156) 6-5/8 (168) 5-5/8 (143) BOTTOM SUPPLY

AIR OPENING

10-3/4 (273) 24 (610) 27 (686) 28 (711) 20 (508)

BOTTOM RETURN

AIR OPENING

6-1/8 (156)

6-1/8 (156)

34-7/8 (886)

TOP VIEW

12-3/8 (3159) BASE

LIFTING HOLES

FOR RIGGING

124-3/8 (3159)

SIDE VIEW

58-1/8 (1476)

46-7/8 (1191)

60-1/8 (1527)

3-1/2 (89)

ELECTRIC

INLETS

34-7/8 (886)

LIFTING HOLES

(FOR RIGGING)

124-3/8 (3159)

OPTIONAL DISCONNECT

(FACTORY INSTALLED)

123-1/8 (3127)

46-7/8 (1191)

CONDENSATE DRAIN (FRONT)

5-3/8 (137)

5/8 (16)

CONDENSATE DRAIN (BACK)

34-7/8 (886)

FORKLIFT SLOTS

(BOTH SIDES)

SIDES VIEW

(Horizontal Openings)

5-3/8 (137)

15-1/2 (394)

15-1/2 (394)

54-5/8 (1387)

6-1/8 (156)

CONDENSATE DRAIN (BACK)

30 (762)

30 (762)

12-1/8 (308)

30 (762)

10-3/4 (273)

(180)

310 (787)

6-1/8 (156)

6-1/8 (156)

89-1/2 (2273)

(2273)

(2273)
Shipping and Packing List

Package 1 of 1 contains:

1- Assembled unit

Check unit for shipping damage. Receiving party should contact last carrier immediately if shipping damage is found.

General

These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation.

KHA units have 7-1/2, 8-1/2, 10, and 12-1/2 ton cooling capacities. KHB units have 7-1/2, 8-1/2, and 10-ton cooling capacities. Optional electric heat is available.

Units are equipped with a supply air inverter. KHB122 units are available with high efficiency direct drive blowers. The blower will operate at lower speeds when cooling demand is low and increase to higher speeds when cooling demand is high. Refer to Supply Air Start-Up sections.

Availability of units and options varies by brand.

Requirements

The KHA/KHB unit is ETL/CSA certified for outdoor installations only at the clearances to combustible materials listed on unit nameplate and in figure 1.

⚠️ NOTICE

Roof Damage!
This system contains both refrigerant and oil. Some rubber roofing material may absorb oil, causing the rubber to swell. Bubbles in the rubber roofing material can cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface.

The National Electric Code (ANSI/NFPA No. 70-1984) is available from:

National Fire Protection Association
1 Batterymarch Park
PO Box 9101
Quincy, MA 02269-9101

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Clearance} & \text{A (in.mm)} & \text{B (in.mm)} & \text{C (in.mm)} & \text{D (in.mm)} & \text{Top Clearance} \\
\hline
\text{Service Clearance} & 60 (1524) & 36 (914) & 36 (914) & 60 (914) & \text{Unobstructed} \\
\hline
\text{Minimum Operation Clearance} & 36 (914) & 36 (914) & 36 (914) & 36 (914) & \text{Unobstructed} \\
\hline
\end{array}
\]

\(^1\) Unit Clearance - Required support when elevated above mounting surface.
Service Clearance - Required for removal of serviceable parts.
Minimum Operation Clearance - Required clearance for proper unit operation.

The KHA/KHB unit is ETL/CSA certified as a heat pump with cooling and with or without auxiliary electric heat for non-residential use only at the clearances to combustible materials as listed on the unit nameplate and in figure 1.

Installation of ETL/CSA certified units must conform with current standard C273.5 “Installation Requirements for Heat Pumps” and applicable local codes. Authorities having jurisdiction should be consulted before installation.

Use of this unit as a construction heater or air conditioner is not recommended during any phase of construction. Very low return air temperatures, harmful vapors and operation of the unit with clogged or misplaced filters will damage the unit.

If this unit has been used for heating or cooling of buildings or structures under construction, the following conditions must be met or the warranty will be void:

- A room thermostat must control the unit. The use of fixed jumpers that will provide continuous heating or cooling is not allowed.
- A pre-filter must be installed at the entry to the return air duct.
- The return air duct must be provided and sealed to the unit.
- Return air temperature range between 55°F (13°C) and 80°F (27°C) must be maintained.
Air filters must be replaced and pre-filter must be removed upon construction completion.

The unit components, duct system, air filters and evaporator coil must be thoroughly cleaned following final construction clean-up.

The unit operating conditions (including airflow, cooling operation, and heating operation) must be verified according to these installation instructions.

WARNING

Electric shock hazard and danger of explosion. Can cause injury, death or product or property damage. Turn off electrical power to unit before performing any maintenance or servicing operations on the unit.

IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance.

Unit Support

NOTE - Securely fasten roof frame to roof per local codes.

CAUTION

To reduce the likelihood of supply / return air bypass and promote a proper seal with the RTU, duct work / duct drops / diffuser assemblies must be supported independently to the building structure.

A-Downflow Discharge Application

Roof Mounting with C1CURB

1- The C1CURB roof mounting frame must be installed, flashed and sealed in accordance with the instructions provided with the frame.

2- The C1CURB roof mounting frame should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction.

3- Duct must be attached to the roof mounting frame and not to the unit; supply and return plenums must be installed before setting the unit.

Installer's Roof Mounting Frame

Many types of roof frames can be used to install the unit, depending upon different roof structures. Items to keep in mind when using the building frame or supports are:

1- The unit base is fully enclosed and insulated, so an enclosed frame is not required.

2- The frames or supports must be constructed with non-combustible materials and should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction.

3- Frame or supports must be high enough to prevent any form of moisture from entering unit. Recommended minimum frame height is 14" (356mm).

4- Duct must be attached to the roof mounting frame and not to the unit. Supply and return plenums must be installed before setting the unit.

5- Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials.

NOTE-When installing unit on a combustible surface for downflow discharge applications, the C1CURB roof mounting frame is required.

B-Horizontal Discharge Applications

1- Units installed in horizontal airflow applications must use a horizontal conversion kit (K1HECK00).

2- Specified installation clearances must be maintained when installing units. Refer to figure 1.

3- Top of support slab should be at least 4" (102mm) above the finished grade and located so no run-off water from higher ground can collect around the unit.

4- Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials.

Duct Connection

All exterior ducts, joints, and openings in roof or building walls must be insulated and weatherproofed with flashing and sealing compounds in accordance with applicable codes. Any duct passing through an unconditioned space must be insulated.

CAUTION

In downflow applications, do not drill or punch holes in base of unit. Leaking in roof may occur if unit base is punctured.
Rigging Unit For Lifting

1- Detach wooden base protection before rigging.
2- Connect rigging to the unit base using both holes in each corner. See figure 2.
3- All panels must be in place for rigging.
4- Place field-provided H-style pick in place just above top edge of unit. Frame must be of adequate strength and length. (H-style pick prevents damage to unit.)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs.</td>
<td>Kg.</td>
</tr>
<tr>
<td>All</td>
<td>1514</td>
</tr>
</tbody>
</table>

*Maximum weight with all available installed accessories.

CAUTION: DO NOT WALK ON UNIT.

Lifting Point Should Be Directly Above Center Of Gravity.

Units are shipped with the drain coupling facing the front of the unit. Condensate can be drained from the back or bottom of the unit with the following modifications. The unit can be installed in either downflow or horizontal air discharge regardless of condensate drain location.

Rear Drain Connection

1- Remove heat access door. See figure 5.
2- Remove filter access door. Refer to figure 5.
3- Remove eight screws holding condensate drain mullion and remove mullion.

Condensate Drains

Make drain connection to the 1" N.P.T. drain coupling provided on unit.

Note - The drain pan is made with a glass reinforced engineered plastic capable of withstanding typical joint torque but can be damaged with excessive force. Tighten pipe nipple hand tight and turn an additional quarter turn.

A trap must be installed between drain connection and an open vent for proper condensate removal. See figure 3 or 4. It is sometimes acceptable to drain condensate onto the roof or grade; however, a tee should be fitted to the trap to direct condensate downward. The condensate line must be vented. Check local codes concerning condensate disposal. Refer to pages 2 and 3 for condensate drain location.
4- Lift front edge of the drain pan (to clear bottom drain plug) and slide drain pan out of unit. See figure 6.

5- Make sure the cap over the unit bottom drain hole is secure.

6- Rotate the drain pan until the downward slope is toward the back of the unit. Slide the drain pan back into the unit. Be careful not to dislodge the cap over the bottom drain hole.

7- From the back side of the unit, pull the drain pan coupling through the rear condensate opening.

8- Replace the condensate drain mullion and reinstall eight screws.

9- Reinstall access doors.

Bottom Drain Connection

1- Remove heat access door. See figure 5.

2- Remove filter access door. Refer to figure 5.

3- Remove eight screws holding condensate drain mullion and remove mullion.

4- Lift front edge of the drain pan (to clear bottom drain plug) and slide drain pan out of unit. See figure 6.

5- Turn the drain pan upside down and drill a pilot hole through the bottom of the drain pan in the center of the coupling. See figure 7.

6- From the inside of the pan, use a Vari-Bit® bit to enlarge the hole to 7/8". Do not damage coupling threads.

7- Remove the cap over the unit bottom drain hole.

8- Slide the drain pan back into the unit.

9- From the back side of the unit, pull the drain pan coupling through the rear condensate opening.

10- From the front side of the unit, move the drain pan until the bottom coupling settles into the unit bottom drain opening. Once in place, check to make sure the coupling is still positioned through the rear condensate drain hole.

11- Use a field-provided 1" plug to seal side drain connection.

12- Replace the condensate drain mullion and reinstall eight screws.

13- Reinstall access doors.
Electrical Connections

POWER SUPPLY

Route field wiring in conduit between bottom power entry disconnect. See figure 8. This does not supersede local codes or authorities having jurisdiction.

CONTROL WIRING

A-Thermostat Location

Room thermostat mounts vertically on a standard 2” X 4” handy box or on any non-conductive flat surface.

Locate thermostat approximately 5 feet (1524 mm) above the floor in an area with good air circulation at average temperature. Avoid locating the room thermostat where it might be affected by:

- drafts or dead spots behind doors and in corners
- hot or cold air from ducts
- radiant heat from sun or appliances
- concealed pipes and chimneys

IMPORTANT - Unless field thermostat wires are rated for maximum unit voltage, they must be routed away from line voltage wiring.

B-Control Wiring

1- Route thermostat cable or wires from subbase to unit control box (refer to unit dimensions to locate bottom and side power entry).

IMPORTANT - Unless field thermostat wires are rated for maximum unit voltage, they must be routed away from line voltage wiring. Use wire ties located near the front of the control section to secure thermostat cable.

Use 18 AWG wire for all applications using remotely installed electro-mechanical and electronic thermostats.

2- Install thermostat assembly in accordance with instructions provided with thermostat.

3- Connect thermostat wiring to TB1 terminal board on the lower side of the controls hat section. Wire as shown in figure 9 for electro-mechanical and electronic thermostats. If using other temperature control devices or energy management systems see instructions and wiring diagram provided by manufacturer.

4- Verify the unit configuration DIP switch settings match the nameplate

IMPORTANT-Terminal connections at the wall plate or subbase must be made securely. Loose control wire connections may allow unit to operate but not with proper response to room demand.

Do not apply power or close disconnect switch until installation is complete. Refer to start-up directions.

Refer to unit nameplate for minimum circuit ampacity and maximum fuse size.

1- 230,460,575 volt units are factory wired. **For 208V supply**, disconnect the pink wire (230V) at all control power transformer(s). Reconnect the pink wire to terminal marked 208 on power transformer(s). Tape the exposed end of the 230V pink wire.

2- Route power through the bottom power entry area and connect to L1, L2, and L3 on the bottom of F4 in the control box. Route power to TB2 on units equipped with electric heat. Route power to S48 disconnect switch when the option is factory-installed. See unit wiring diagram.

3- Connect separate 120v wiring to optional GFCI outlet pigtails. Route field wiring in conduit between bottom power entry and GFCI. See figure 8.
24 VOLT FIELD WIRING WITH ELECTRONIC AND ELECTRO-MECHANICAL THERMOSTATS

TB1

A2 THERMOSTAT

NOT ALL TERMINALS ARE FOUND ON ALL THERMOSTATS

Jumper terminals R and OC when thermostat has no night set-back terminals on units equipped with an economizer.

Note - On electro-mechanical thermostats set anticipator at 0.1 amps.

FIGURE 9

Unit Power-Up

A-General

1- Make sure that unit is installed in accordance with the installation instructions and applicable codes.

2- Inspect all electrical wiring, both field and factory installed, for loose connections. Tighten as required.

3- Check to ensure that refrigerant lines do not rub against the cabinet or against other refrigerant lines.

4- Check voltage at main unit power connection. Voltage must be within range listed on nameplate. If not, consult power company and have voltage condition corrected before starting unit.

5- Make sure filters are in place before start-up.

6- Make sure there is no heating, cooling, or blower demand from thermostat. Apply power to unit.

7- KHB Units Only - Verify the FCB (A191) fan control board DIP switch settings are correct. Use the model number on the unit nameplate and figure 10. The FCB is in the control section above the compressors.

FIGURE 10

FCB (A191) DIP SWITCH SETTINGS

KHB092H4B

KHB092H4M

KHB102H4B

KHB102H4M

KHB122H4E

Page 9
Blower Operation and Adjustments

A-Three Phase Scroll Compressor Voltage Phasing

Three phase scroll compressors must be phased sequentially to ensure correct compressor and blower rotation and operation. Compressor and blower are wired in phase at the factory. Power wires are color-coded as follows: line 1-red, line 2-yellow, line 3-blue.

1- Observe suction and discharge pressures and blower rotation on unit start-up.

If pressure differential is not observed or blower rotation is not correct:

2- Suction pressure must drop, discharge pressure must rise, and blower rotation must match rotation marking.

3- Disconnect all remote electrical power supplies.

4- Reverse any two field-installed wires connected to the line side of K3, TB2 or F4. Do not reverse wires at blower contactor or compressors.

5- Make sure the connections are tight.

Discharge and suction pressures should operate at their normal start-up ranges.

Belt-Driven Supply Air Inverter Units - Units are equipped with a phase monitor located in the control compartment. The phase monitor will detect the phasing of incoming power. If the incoming power is out of phase or if any of the three phases are lost, the indicating LED on the phase monitor will turn red and the unit will not start. In normal operation with correct incoming power phasing, the LED will be green.

B-Blower Operation

Initiate blower demand at thermostat according to instructions provided with thermostat. Unit will cycle on thermostat demand. The following steps apply to applications using a typical electro-mechanical thermostat.

1- Blower operation is manually set at the thermostat subbase fan switch. With fan switch in ON position, blowers will operate continuously.

2- With fan switch in AUTO position, the blowers will cycle with demand. Blowers and entire unit will be off when system switch is in OFF position.

C-Blower Access

The blower assembly is secured to a sliding frame which allows the blower motor to be pulled out of the unit. See figure 11 and 12.

<table>
<thead>
<tr>
<th>Standard Blower Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO INCREASE BELT TENSION</td>
</tr>
<tr>
<td>1- Loosen four bolts securing motor mounting base to frame.</td>
</tr>
<tr>
<td>2- Turn adjusting bolt to the right, or clockwise, to move the motor away from the blower housing.</td>
</tr>
<tr>
<td>IMPORTANT - Gap between end of frame and motor mounting base should be equal at both ends, i.e. parallel along gap.</td>
</tr>
<tr>
<td>3- Tighten four bolts securing motor mounting base to frame.</td>
</tr>
<tr>
<td>4- Relieve tension on two adjusting bolts.</td>
</tr>
</tbody>
</table>

FIGURE 11

Page 10
Belt Drive Blowers

1- Loosen the reusable wire tie which secures the blower wiring to the blower motor mounting plate.
2- Remove and retain screws on either side of sliding frame. Pull frame toward outside of unit.
3- Slide frame back into original position when finished servicing. Reattach the blower wiring in the previous location on the blower motor base using the wire tie.
4- Replace retained screws on either side of the sliding frame.

Direct Drive Blowers

1- Loosen the reusable wire tie which secures the controls and high voltage blower wiring to the blower housing.
2- Remove and retain screws in front and on either side of blower housing. Pull frame toward outside of unit.
3- Slide frame back into original position when finished servicing. Reattach the blower wiring in the previous location on the blower motor base using the wire tie.
4- Replace retained screws in front and on either side of the blower housing.
D-Determining Unit CFM

IMPORTANT - Belt-driven supply air inverter units are factory-set to run the blower at full speed when there is a blower (G) demand without a heating or cooling demand. Use the following procedure to adjust motor pulley to deliver the full load cooling or heating CFM. See Belt-Driven Supply Air Inverter Start-Up section to set blower CFM for all modes once the motor pulley is set.

IMPORTANT - Direct drive variable blower unit CFM is determined by the Fan Control board. Refer to the Direct Drive Supply Air Blower Start-Up section.

1- The following measurements must be made with a dry indoor coil. Run blower without a cooling demand. Measure the indoor blower shaft RPM. Air filters must be in place when measurements are taken.

2- With all access panels in place, measure static pressure external to unit (from supply to return). Blower performance data is based on static pressure readings taken in locations shown in figure 13.

Note - Static pressure readings can vary if not taken where shown.

3- Referring to page 14, 15, or 16, use static pressure and RPM readings to determine unit CFM. Use page 17 when installing units with any of the optional accessories listed.

4- The blower RPM can be adjusted at the motor pulley. Loosen Allen screw and turn adjustable pulley clockwise to increase CFM. Turn counterclockwise to decrease CFM. See figure 11. Do not exceed minimum and maximum number of pulley turns as shown in table 1.

TABLE 1

MINIMUM AND MAXIMUM PULLEY ADJUSTMENT

<table>
<thead>
<tr>
<th>Belt</th>
<th>Minimum Turns Open</th>
<th>Maximum Turns Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Section</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>B Section</td>
<td>1*</td>
<td>6</td>
</tr>
</tbody>
</table>

*No minimum number of turns open when B belt is used on pulleys 6” O.D. or larger.

E-Blower Belt Adjustment

Maximum life and wear can be obtained from belts only if proper pulley alignment and belt tension are maintained. Tension new belts after a 24-48 hour period of operation. This will allow belt to stretch and seat in the pulley grooves. Make sure blower and motor pulleys are aligned as shown in figure 14.

1- Loosen four bolts securing motor base to mounting frame. See figure 11.

2- To increase belt tension -
 Turn both adjusting bolts to the right, or clockwise, to move the motor outward and tighten the belt. This increases the distance between the blower motor and the blower housing.

 To loosen belt tension -
 Turn the adjusting bolts to the left, or counterclockwise to loosen belt tension.

IMPORTANT - Align top edges of blower motor base and mounting frame base parallel before tightening four bolts on the side of base. Motor shaft and blower shaft must be parallel.

3- Tighten two bolts on each side of the motor mounting base. This secures the mounting base to the frame.

4- Relieve tension adjusting bolts.
F-Check Belt Tension
Overtensioning belts shortens belt and bearing life.
Check belt tension as follows:

1- Measure span length X. See figure 15.

2- Apply perpendicular force to center of span (X) with enough pressure to deflect belt 1/64” for every inch of span length or 1.5mm per 100mm of span length.
Example: Deflection distance of a 40” span would be 40/64” or 5/8”.
Example: Deflection distance of a 400mm span would be 6mm.

3- Measure belt deflection force. For a new 2 and 3hp belt, the deflection force should be 5.0-7.0 lbs. (35-48kPa). For a new 5hp belt, the deflection force should be 7-10lbs. (48-69kPa).
A force below these values indicates an undertensioned belt. A force above these values indicates an overtensioned belt.

G-Field-Furnished Blower Drives
For field-furnished blower drives, use pages 14 through 15 to determine BHP and RPM required. Reference page 17 to determine the drive number. Reference table 2 for drive component manufacturer’s numbers.
KHA092 BELT DRIVE BLOWER – BASE UNIT

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY (NO HEAT SECTION) WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

1 – Wet indoor coil air resistance of selected unit.
2 – Any factory installed options air resistance (heat section, economizer, etc.)
3 – Any field installed accessories air resistance (duct resistance, diffuser, etc.)

Then determine from blower table blower motor output required.

See page 17 for blower motors and drives.

See page 17 for wet coil and option/accessory air resistance data.

MINIMUM AIR VOLUME REQUIRED FOR USE WITH OPTIONAL ELECTRIC HEAT (Maximum Static Pressure - 2.0 in. w.g.)

7.5 kW, 15 kW, 22.5 kW, 30 kW and 45 kW - 2800 cfm

<table>
<thead>
<tr>
<th>Total Air Volume cfm</th>
<th>Total Static Pressure – in. w.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>1750</td>
<td>583</td>
</tr>
<tr>
<td>2000</td>
<td>593</td>
</tr>
<tr>
<td>2250</td>
<td>604</td>
</tr>
<tr>
<td>2500</td>
<td>615</td>
</tr>
<tr>
<td>2750</td>
<td>626</td>
</tr>
<tr>
<td>3000</td>
<td>637</td>
</tr>
<tr>
<td>3250</td>
<td>650</td>
</tr>
<tr>
<td>3500</td>
<td>663</td>
</tr>
<tr>
<td>3750</td>
<td>676</td>
</tr>
</tbody>
</table>

Page 14
BLOWER DATA

KHA102, 120, 150 & KHB092, 102 BELT DRIVE BLOWER − BASE UNIT

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY (NO HEAT SECTION) WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

1 – Wet indoor coil air resistance of selected unit.
2 – Any factory installed options air resistance (heat section, economizer, etc.)
3 – Any field installed accessories air resistance (duct resistance, diffuser, etc.)

Then determine from blower table blower motor output required.

See page 17 for blower motors and drives.
See page 17 for wet coil and option/accessory air resistance data.

MINIMUM AIR VOLUME REQUIRED FOR USE WITH OPTIONAL ELECTRIC HEAT (Maximum Static Pressure - 2.0 in. w.g.)

<table>
<thead>
<tr>
<th>Total Air Volume cfm</th>
<th>Total Static Pressure − in. w.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>RPM</td>
<td>BHP</td>
</tr>
<tr>
<td>1750</td>
<td>480</td>
</tr>
<tr>
<td>2000</td>
<td>492</td>
</tr>
<tr>
<td>2250</td>
<td>505</td>
</tr>
<tr>
<td>2500</td>
<td>520</td>
</tr>
<tr>
<td>2750</td>
<td>536</td>
</tr>
<tr>
<td>3000</td>
<td>553</td>
</tr>
<tr>
<td>3250</td>
<td>572</td>
</tr>
<tr>
<td>3500</td>
<td>592</td>
</tr>
<tr>
<td>3750</td>
<td>614</td>
</tr>
<tr>
<td>4000</td>
<td>639</td>
</tr>
<tr>
<td>4250</td>
<td>666</td>
</tr>
<tr>
<td>4500</td>
<td>697</td>
</tr>
<tr>
<td>4750</td>
<td>729</td>
</tr>
<tr>
<td>5000</td>
<td>763</td>
</tr>
<tr>
<td>5250</td>
<td>797</td>
</tr>
<tr>
<td>5500</td>
<td>830</td>
</tr>
<tr>
<td>5750</td>
<td>861</td>
</tr>
<tr>
<td>6000</td>
<td>890</td>
</tr>
<tr>
<td>6250</td>
<td>918</td>
</tr>
</tbody>
</table>

Page 15
BLOWER DATA

KHB122 DIRECT DRIVE BLOWER ALL MODELS – BASE UNIT

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY (NO HEAT SECTION) WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

1. Wet indoor coil air resistance of selected unit.
2. Any factory installed options air resistance (heat section, economizer, etc.)
3. Any field installed accessories air resistance (duct resistance, diffuser, etc.)

See page 17 for wet coil and option/accessory air resistance data.

MINIMUM AIR VOLUME REQUIRED FOR USE WITH OPTIONAL ELECTRIC HEAT (Maximum Static Pressure - 2.0 in. w.g.)

15 kW, 22.5 kW, 30 kW, 45 kW - 2750 cfm

60 kW - 3500 cfm

<table>
<thead>
<tr>
<th>Total Air Volume cfm</th>
<th>Total Static Pressure - in. w.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>RPM Watts RPM Watts</td>
<td>RPM Watts RPM Watts</td>
</tr>
<tr>
<td>1750 711 188 771 279 836 366 905 453 975 544 1044 640 1109 737</td>
<td></td>
</tr>
<tr>
<td>2000 752 242 812 332 876 420 944 510 1011 606 1075 709 1138 812</td>
<td></td>
</tr>
<tr>
<td>2250 799 300 860 389 923 479 988 575 1052 678 1113 787 1171 896</td>
<td></td>
</tr>
<tr>
<td>2500 853 362 914 453 976 548 1038 650 1097 761 1154 877 1209 990</td>
<td></td>
</tr>
<tr>
<td>2750 914 434 974 529 1033 629 1091 739 1146 858 1199 979 1250 1098</td>
<td></td>
</tr>
<tr>
<td>3000 980 513 1037 614 1092 720 1146 837 1198 961 1247 1088 1295 1098</td>
<td></td>
</tr>
<tr>
<td>3250 1048 598 1101 705 1153 819 1203 941 1251 1071 1298 1206 1343 1343</td>
<td></td>
</tr>
<tr>
<td>3500 1116 693 1166 809 1214 931 1261 1060 1307 1198 1351 1341 1395 1489</td>
<td></td>
</tr>
<tr>
<td>3750 1185 806 1232 931 1277 1063 1322 1201 1365 1348 1407 1499 1448 1657</td>
<td></td>
</tr>
<tr>
<td>4000 1254 937 1299 1072 1341 1214 1383 1363 1424 1518 1464 1679 1503 1844</td>
<td></td>
</tr>
<tr>
<td>4250 1324 1089 1366 1234 1406 1386 1445 1545 1484 1708 1522 1876 1559 2046</td>
<td></td>
</tr>
<tr>
<td>4500 1395 1262 1433 1417 1471 1579 1508 1745 1544 1913 1581 2084 1616 2256</td>
<td></td>
</tr>
<tr>
<td>4750 1465 1455 1501 1619 1536 1787 1571 1957 1606 2128 1641 2299 1675 2470</td>
<td></td>
</tr>
<tr>
<td>5000 1534 1666 1568 1834 1602 2004 1635 2174 1668 2345 1701 2514 1735 2682</td>
<td></td>
</tr>
<tr>
<td>5250 1603 1887 1635 2055 1667 2224 1699 2392 1731 2559 1763 2724</td>
<td></td>
</tr>
<tr>
<td>5500 1671 2110 1702 2275 1733 2441 1764 2605</td>
<td></td>
</tr>
<tr>
<td>5750 1738 2325 1768 2488</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Air Volume cfm</th>
<th>Total Static Pressure - in. w.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>RPM Watts RPM Watts</td>
<td>RPM Watts RPM Watts RPM Watts RPM Watts RPM Watts RPM Watts</td>
</tr>
<tr>
<td>1750 1172 933 1231 932 1287 1039 1340 1156 1391 1283 1442 1426</td>
<td></td>
</tr>
<tr>
<td>2000 1197 1161 1253 1019 1306 1135 1357 1261 1407 1398 1457 1547</td>
<td></td>
</tr>
<tr>
<td>2250 1227 1317 1280 1177 1330 1242 1379 1378 1428 1525 1477 1680</td>
<td></td>
</tr>
<tr>
<td>2500 1261 1103 1311 1226 1360 1361 1407 1507 1454 1663 1501 1826</td>
<td></td>
</tr>
<tr>
<td>2750 1299 1219 1347 1350 1394 1494 1440 1649 1485 1813 1530 1982</td>
<td></td>
</tr>
<tr>
<td>3000 1342 1346 1388 1487 1432 1640 1476 1803 1520 1973 1563 2146</td>
<td></td>
</tr>
<tr>
<td>3250 1388 1485 1432 1638 1475 1800 1517 1969 1558 2143 1600 2319</td>
<td></td>
</tr>
<tr>
<td>3500 1437 1643 1479 1805 1519 1975 1560 2148 1600 2325 1640 2502</td>
<td></td>
</tr>
<tr>
<td>3750 1489 1821 1528 1900 1567 2164 1605 2340 1645 2517 1685 2693</td>
<td></td>
</tr>
<tr>
<td>4000 1541 2014 1579 2187 1616 2364 1654 2540 1693 2715 1732 2887</td>
<td></td>
</tr>
<tr>
<td>4250 1596 2218 1632 2393 1668 2599 1705 2742 1743 2913</td>
<td></td>
</tr>
<tr>
<td>4500 1652 2429 1687 2603 1722 2775 1759 2944</td>
<td></td>
</tr>
<tr>
<td>4750 1709 2641 1743 2811 1778 2979</td>
<td></td>
</tr>
<tr>
<td>5000 1768 2850</td>
<td></td>
</tr>
<tr>
<td>5250</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>5750</td>
<td></td>
</tr>
</tbody>
</table>
BLOWER DATA

FACTORY INSTALLED BELT DRIVE KIT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Nominal hp</th>
<th>Maximum hp</th>
<th>Drive Kit Number</th>
<th>RPM Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.3</td>
<td>1</td>
<td>590 - 890</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>2</td>
<td>800 - 1105</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>3</td>
<td>795 - 1195</td>
</tr>
<tr>
<td>3</td>
<td>3.45</td>
<td>4</td>
<td>730 - 970</td>
</tr>
<tr>
<td>3</td>
<td>3.45</td>
<td>5</td>
<td>940 - 1200</td>
</tr>
<tr>
<td>3</td>
<td>3.45</td>
<td>6</td>
<td>1015 - 1300</td>
</tr>
<tr>
<td>5</td>
<td>5.75</td>
<td>10</td>
<td>900 - 1135</td>
</tr>
<tr>
<td>5</td>
<td>5.75</td>
<td>11</td>
<td>1040 - 1315</td>
</tr>
<tr>
<td>5</td>
<td>5.75</td>
<td>12</td>
<td>1125 - 1425</td>
</tr>
</tbody>
</table>

POWER EXHAUST FAN PERFORMANCE

<table>
<thead>
<tr>
<th>Return Air System Static Pressure</th>
<th>Air Volume Exhausted</th>
</tr>
</thead>
<tbody>
<tr>
<td>in. w.g.</td>
<td>cfm</td>
</tr>
<tr>
<td>0</td>
<td>3175</td>
</tr>
<tr>
<td>0.05</td>
<td>2955</td>
</tr>
<tr>
<td>0.10</td>
<td>2685</td>
</tr>
<tr>
<td>0.15</td>
<td>2410</td>
</tr>
<tr>
<td>0.20</td>
<td>2165</td>
</tr>
<tr>
<td>0.25</td>
<td>1920</td>
</tr>
<tr>
<td>0.30</td>
<td>1420</td>
</tr>
<tr>
<td>0.35</td>
<td>1200</td>
</tr>
</tbody>
</table>

FACTORY INSTALLED OPTIONS/FIELD INSTALLED ACCESSORY AIR RESISTANCE - in. w.g.

<table>
<thead>
<tr>
<th>Air Volume cfm</th>
<th>Wet Indoor Coil</th>
<th>Electric Heat</th>
<th>Economizer</th>
<th>Filters MERV 8</th>
<th>Filters MERV 13</th>
<th>Return Air Adaptor Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KHA092</td>
<td>KHA102, 120, 150 KHB092, 102, 122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2000</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2250</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2500</td>
<td>0.05</td>
<td>0.07</td>
<td>0.04</td>
<td>0.11</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>2750</td>
<td>0.06</td>
<td>0.08</td>
<td>0.05</td>
<td>0.12</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>3000</td>
<td>0.07</td>
<td>0.10</td>
<td>0.06</td>
<td>0.13</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>3250</td>
<td>0.08</td>
<td>0.11</td>
<td>0.06</td>
<td>0.15</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>3500</td>
<td>0.09</td>
<td>0.12</td>
<td>0.09</td>
<td>0.15</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>3750</td>
<td>0.10</td>
<td>0.14</td>
<td>0.09</td>
<td>0.15</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>4000</td>
<td>0.11</td>
<td>0.15</td>
<td>0.09</td>
<td>0.19</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>4250</td>
<td>0.13</td>
<td>0.17</td>
<td>0.13</td>
<td>0.19</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>4500</td>
<td>0.14</td>
<td>0.19</td>
<td>0.14</td>
<td>0.22</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>4750</td>
<td>0.15</td>
<td>0.20</td>
<td>0.17</td>
<td>0.25</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>5000</td>
<td>0.16</td>
<td>0.22</td>
<td>0.20</td>
<td>0.29</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>5250</td>
<td>0.17</td>
<td>0.24</td>
<td>0.22</td>
<td>0.32</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>5500</td>
<td>0.19</td>
<td>0.25</td>
<td>0.25</td>
<td>0.34</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>5750</td>
<td>0.20</td>
<td>0.27</td>
<td>0.31</td>
<td>0.45</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>6000</td>
<td>0.22</td>
<td>0.29</td>
<td>0.33</td>
<td>0.52</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>
TABLE 2
MANUFACTURER'S NUMBERS

<table>
<thead>
<tr>
<th>DRIVE NO.</th>
<th>ADJUSTABLE SHEAVE</th>
<th>FIXED SHEAVE</th>
<th>BELT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BROWNING NO.</td>
<td>OEM PART NO.</td>
<td>BROWNING NO.</td>
</tr>
<tr>
<td>1</td>
<td>1VP34x7/8</td>
<td>31K6901</td>
<td>AK61x1</td>
</tr>
<tr>
<td>2</td>
<td>1VP40x7/8</td>
<td>79J0301</td>
<td>AK59x1</td>
</tr>
<tr>
<td>3</td>
<td>1VP34x7/8</td>
<td>31K6901</td>
<td>AK46x1</td>
</tr>
<tr>
<td>4</td>
<td>1VP44x7/8</td>
<td>53J9601</td>
<td>AK74x1</td>
</tr>
<tr>
<td>5</td>
<td>1VP50x7/8</td>
<td>98J0001</td>
<td>AK69x1</td>
</tr>
<tr>
<td>6</td>
<td>1VP50x7/8</td>
<td>98J0001</td>
<td>AK64x1</td>
</tr>
<tr>
<td>10</td>
<td>1VP50x1-1/8</td>
<td>P-8-1977</td>
<td>BK77x1</td>
</tr>
<tr>
<td>11</td>
<td>1VP50x1-1/8</td>
<td>P-8-1977</td>
<td>BK67x1</td>
</tr>
<tr>
<td>12</td>
<td>1VP50x1-1/8</td>
<td>P-8-1977</td>
<td>BK62x1</td>
</tr>
</tbody>
</table>

Heating Start-Up

1- Set thermostat or temperature control device to initiate a first-stage heating demand.

A first-stage heating demand (W1) will energize compressors 1 and 2. Both outdoor fans are energized with a W1 demand.

Note - L1 and L2 reversing valves are de-energized in the heating mode.

KHA/KHB Units With Optional Electric Heat -
An increased heating demand (W2) will energize electric heat. Electric heat is also energized during the defrost cycle (W1) to maintain discharge air temperature.

Cooling Start-Up

IMPORTANT
If unit is equipped with a crankcase heater. Make sure heater is energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

A-Start-Up

Note - Refer to the Supply Air Blower or Inverter Start-Up section.

1- Set thermostat or temperature control device fan switch to **AUTO** or **ON**. Set thermostat or temperature control device to initiate a first-stage cooling demand.

A first-stage Y1 cooling demand will energize L1 reversing valve solenoid and compressor 1. An increased cooling demand Y2 will initiate L2 reversing valve solenoid and compressor 2.

Units With Optional Economizer -
The optional economizer will start on a first stage (Y1) cooling demand when outdoor air enthalpy is suitable. An increased cooling demand (Y2) will energize compressors 1.

2- Refrigerant circuits are factory charged with HCFC-410A refrigerant. See unit rating plate for correct amount of charge.

3- Units contain two refrigerant circuits or systems. See figure 16 or 17.

REFRIGERANT STAGES - TWO FANS

KHA092S, 102S, 120S:
Y1 Demand = Outdoor Fans 1 & 2 Energized
Y2 Demand = Both fans continue to operate

KHB092H, 102H:
Y1 Demand = Outdoor Fan 1 Low Speed and Outdoor Fan 2 Low Speed
Y2 Demand = Outdoor Fan 1 High Speed and Outdoor Fan 2 High Speed

![FIGURE 16](image-url)
B-Refrigerant Charge and Check

WARNING-Do not exceed nameplate charge under any condition. This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, reclaim the charge, evacuate the system, and add required nameplate charge.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge must be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

1- Attach gauge manifolds and operate unit in cooling mode with economizer disabled until system stabilizes (approximately five minutes).

2- Check each system separately with all stages operating.

3- Use a thermometer to accurately measure the outdoor ambient temperature.

4- Apply the outdoor temperature to tables 3 through 9 to determine normal operating pressures. Pressures are listed for sea level applications at 80°F dry bulb and 67°F wet bulb return air.

5- Compare the normal operating pressures to the pressures obtained from the gauges. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Correct any system problems before proceeding.

TABLE 3
KHA092S NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge +10 psig</td>
<td>Suction +5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>253</td>
<td>139</td>
</tr>
<tr>
<td>75°F</td>
<td>291</td>
<td>141</td>
</tr>
<tr>
<td>85°F</td>
<td>333</td>
<td>144</td>
</tr>
<tr>
<td>95°F</td>
<td>378</td>
<td>146</td>
</tr>
<tr>
<td>105°F</td>
<td>428</td>
<td>149</td>
</tr>
<tr>
<td>115°F</td>
<td>483</td>
<td>153</td>
</tr>
</tbody>
</table>

TABLE 4
KHB092H NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge +10 psig</td>
<td>Suction +5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>250</td>
<td>140</td>
</tr>
<tr>
<td>75°F</td>
<td>287</td>
<td>143</td>
</tr>
<tr>
<td>85°F</td>
<td>329</td>
<td>146</td>
</tr>
<tr>
<td>95°F</td>
<td>371</td>
<td>148</td>
</tr>
<tr>
<td>105°F</td>
<td>423</td>
<td>151</td>
</tr>
<tr>
<td>115°F</td>
<td>472</td>
<td>154</td>
</tr>
</tbody>
</table>

TABLE 5
KHA102S NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge +10 psig</td>
<td>Suction +5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>258</td>
<td>132</td>
</tr>
<tr>
<td>75°F</td>
<td>299</td>
<td>136</td>
</tr>
<tr>
<td>85°F</td>
<td>340</td>
<td>140</td>
</tr>
<tr>
<td>95°F</td>
<td>388</td>
<td>144</td>
</tr>
<tr>
<td>105°F</td>
<td>439</td>
<td>149</td>
</tr>
<tr>
<td>115°F</td>
<td>490</td>
<td>154</td>
</tr>
</tbody>
</table>

TABLE 6
KHB102H NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge +10 psig</td>
<td>Suction +5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>257</td>
<td>136</td>
</tr>
<tr>
<td>75°F</td>
<td>296</td>
<td>139</td>
</tr>
<tr>
<td>85°F</td>
<td>335</td>
<td>141</td>
</tr>
<tr>
<td>95°F</td>
<td>384</td>
<td>144</td>
</tr>
<tr>
<td>105°F</td>
<td>431</td>
<td>147</td>
</tr>
<tr>
<td>115°F</td>
<td>485</td>
<td>150</td>
</tr>
</tbody>
</table>
TABLE 7
KHA120S NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Suction</td>
</tr>
<tr>
<td></td>
<td>+10 psig</td>
<td>+5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>261</td>
<td>128</td>
</tr>
<tr>
<td>75°F</td>
<td>299</td>
<td>131</td>
</tr>
<tr>
<td>85°F</td>
<td>342</td>
<td>134</td>
</tr>
<tr>
<td>95°F</td>
<td>387</td>
<td>137</td>
</tr>
<tr>
<td>105°F</td>
<td>436</td>
<td>140</td>
</tr>
<tr>
<td>115°F</td>
<td>489</td>
<td>143</td>
</tr>
</tbody>
</table>

TABLE 8
KHB122H NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Suction</td>
</tr>
<tr>
<td></td>
<td>+10 psig</td>
<td>+5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>248</td>
<td>131</td>
</tr>
<tr>
<td>75°F</td>
<td>284</td>
<td>134</td>
</tr>
<tr>
<td>85°F</td>
<td>322</td>
<td>136</td>
</tr>
<tr>
<td>95°F</td>
<td>371</td>
<td>139</td>
</tr>
<tr>
<td>105°F</td>
<td>416</td>
<td>142</td>
</tr>
<tr>
<td>115°F</td>
<td>470</td>
<td>145</td>
</tr>
</tbody>
</table>

TABLE 9
KHA150S NORMAL OPERATING PRESSURES

<table>
<thead>
<tr>
<th>Outdoor Coil Entering Air Temp</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Suction</td>
</tr>
<tr>
<td></td>
<td>+10 psig</td>
<td>+5 psig</td>
</tr>
<tr>
<td>65°F</td>
<td>245</td>
<td>130</td>
</tr>
<tr>
<td>75°F</td>
<td>284</td>
<td>134</td>
</tr>
<tr>
<td>85°F</td>
<td>326</td>
<td>137</td>
</tr>
<tr>
<td>95°F</td>
<td>371</td>
<td>140</td>
</tr>
<tr>
<td>105°F</td>
<td>419</td>
<td>144</td>
</tr>
<tr>
<td>115°F</td>
<td>470</td>
<td>147</td>
</tr>
</tbody>
</table>

CIRCUIT 2

6- If discharge pressure is high, remove refrigerant from the system. If discharge pressure is low, add refrigerant to the system.

- Add or remove charge in increments.
- Allow the system to stabilize each time refrigerant is added or removed.

7- Use the following approach method along with the normal operating pressures to confirm readings.

C-Charge Verification - Approach Method - AHRI Testing

1- Using the same thermometer, compare liquid temperature to outdoor ambient temperature.

Approach Temperature = Liquid temperature (at condenser outlet) minus ambient temperature.

2- Approach temperature should match values in table 10. An approach temperature greater than value shown indicates an undercharge. An approach temperature less than value shown indicates an overcharge.

3- The approach method is not valid for grossly over or undercharged systems. Use tables 3 through 9 as a guide for typical operating pressures.

**TABLE 10
APPROACH TEMPERATURE**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Liquid Temp. Minus Ambient Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Stage</td>
</tr>
<tr>
<td></td>
<td>2nd Stage</td>
</tr>
<tr>
<td>092S</td>
<td>10°F ± 1 (5.6°C ± 0.5)</td>
</tr>
<tr>
<td>092H, 102S & H</td>
<td>8°F ± 1 (4.4°C ± 0.5)</td>
</tr>
<tr>
<td>120S</td>
<td>6°F ± 1 (3.3°C ± 0.5)</td>
</tr>
<tr>
<td>122H, 150S</td>
<td>6°F ± 1 (3.3°C ± 0.5)</td>
</tr>
</tbody>
</table>

D-Compressor Controls

1- High Pressure Switches (S4, S7)
Compressor circuits are protected by a high pressure switch which cuts out at 640 psig ± 10 psig (4413 kPa ± 70 kPa).

2- Freezestats (S49, S50)
Switches de-energize compressors when indoor coil temperature falls below 29°F (-2°C) to prevent coil freeze-up. Switches reset when indoor coil temperature reaches 58°F (15°C).

3- Crankcase Heater (HR1, HR2)
Compressors have belly band compressor oil heaters which must be on 24 hours before running compressors. Energize by setting thermostat so that there is no cooling demand, to prevent compressor from cycling, and apply power to unit.

4- Defrost Switches (S6, S9)
Defrost switches close to initiate defrost when liquid line temperature falls to 35°F (1.7°C). The defrost switch is located on the liquid line between the outdoor expansion valve and the distributor.

5- Defrost Termination Switches (S46, S104)
Defrost pressure switches open to terminate defrost when vapor (discharge pressure during cooling and defrost) pressure reaches 450 psig (3103 kPa).

6- Defrost Controls (CMC1)
Defrost is liquid line temperature initiated and operates for 14 minutes unless terminated by vapor line pressure drop.

When the liquid line temperature drops below 35°F, the defrost switch closes and signals the **defrost control** that a defrost cycle is needed. If the defrost switch is still closed after 60 minutes (default), a defrost cycle begins and operates for 14 minutes. The defrost pressure switch can terminate the defrost cycle before the 14 minutes elapses if vapor pressure reaches 450 ± 10 psi.

Electric heat is energized during defrost to maintain discharge air temperature.
Defrost Control Board

The defrost thermostat, defrost pressure switch and the defrost control work together to ensure that the heat pump outdoor coil does not ice excessively during the heating mode.

Compressor Accumulated Run-Time Interval

The defrost control will not energize a defrost cycle unless the unit has been operating in heating mode for an accumulated 60 minutes (default) on 100269-02 boards; 90 minutes (default) on 100269-04 boards. The run time interval can be changed by moving the jumper on the CMC board timing pins. See figure 18.

The defrost interval can be adjusted to 30, 60, or 90 minutes. The defrost timing jumper is factory-installed to provide a 60-minute defrost interval. If the timing selector jumper is not in place, the control defaults to a 90-minute defrost interval.

Defrost Test Option

A TEST option is provided for troubleshooting. The TEST mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered. If the timing jumper is in the TEST position at power-up, the defrost control will ignore the test pins. When the jumper is placed across the TEST pins for two seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost pressure switch opens or 14 minutes have passed. If the jumper is not removed until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

Diagnostic LEDs

The defrost board uses two LEDs for diagnostics. The LEDs flash a sequence according to the condition.

Table 11	Defrost Control Board Diagnostic LED	
Indicates	LED 1	LED 2
Normal operation / power to board	Synchronized flash with LED 2	Synchronized flash with LED 1
Board failure / no power	Off	Off
Board failure	On	On
Pressure switch open	Flash	On

FIGURE 18

DEFROST CONTROL BOARD CMC1

TIMING JUMPER

100269-02: 60 MINUTES
100269-04: 90 MINUTES

100269-02: INSTALLED AT THE FACTORY TO DISABLE COMPRESSOR DELAY

100269-04: REMOVED AT THE FACTORY TO DISABLE COMPRESSOR DELAY

DIAGNOSTIC LEDS

FIGURE 18
KHA Belt Drive Supply Air Inverter
Start-Up

A-General

1- Units are equipped with an inverter (variable frequency drive or VFD) which provides two blower speeds. The blower will operate at lower speeds when cooling demand is low and higher speeds when cooling demand is high. This results in lower energy consumption.

2- Units will operate at high speed during ventilation (blower “G” only signal) but can be adjusted to operate at low speed.

3- Low speed is approximately 2/3 of the full speed RPM.

B-Set Maximum Blower CFM

1- Initiate a blower (G) only signal from the room thermostat or control system.

2- Adjust the blower pulley to deliver the full (high speed) CFM in the typical manner. See Determining Unit CFM in the Blower Operation and Adjustment section.

C-Set Blower Speed During Ventilation

To save energy during ventilation, the blower speed can be set to low. This is accomplished by changing the ventilation speed switch on the VFD control board to “LO”. See figure 19.

Note - On units equipped with an economizer, set damper minimum position as shown in the next section. After adjusting the low speed minimum position, the ventilation speed switch will be in the “LO” position.

D-Set Damper Minimum Position (Units W/ Economizer)

To maintain required minimum ventilation air volumes when the unit is in the occupied mode, two minimum damper positions must be set. A high and a low speed potentiometer are provided on the VFD control board to adjust minimum damper position. See figure 19.

Set High Speed Minimum Position

1- Initiate a blower (G) only AND occupied demand from the room thermostat or control system.

2- Set the ventilation speed switch on the VFD control board to “HI”.

3- Rotate the high speed potentiometer on the VFD control board to set the high speed minimum damper position.

4- Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open.

If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.

Set Low Speed Minimum Position

1- Initiate a blower (G) only AND occupied demand from the room thermostat or control system.

2- Set the ventilation speed switch on the VFD control board to “LO”.

3- Rotate the low speed potentiometer on the VFD control board to set the low speed minimum damper position.

4- Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open.

If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.
Troubleshoot LVC2 Board (A183)
Refer to wiring diagram sections B (unit), C (control) and D (economizer) located on inside of unit panels.

1- Inspect the LVC2 for damaged components. Replace the LVC2 if damaged components are found.

2- Check all wire connections to LVC2; secure if loose.

3- Check for 24VAC signal at the thermostat blower input (G to GND terminal). See figure 20.

4- If there is no thermostat signal, troubleshoot back toward the thermostat.

5- Check the power LED on the board. See figure 19.

6- If the power LED is not on, check voltage between LVC2 terminals PC (H2-1) and SD (H2-5). Voltage should read 24VDC.

7- If voltage does not read 24VDC, disconnect the H2 header from the LVC2 VFD inputs terminal block (to make sure the LVC2 is not shorting 24VDC supply from the inverter). Measure the voltage between the end terminals on the H2 header. If 24VDC is present, replace the LVC2 board. If no voltage is read, troubleshoot the VFD.

8- When LVC2 24VAC thermostat blower (G) input and 24VDC power are present, check the LVC2 low and high speed outputs. The LVC2 uses inverse logic to enable the blower; 1VDC will be read at the enabled blower speed terminal. See table 12.

9- If all inputs are correct and the unit still does not operate as intended, replace LVC2 board.

<table>
<thead>
<tr>
<th>Output Terminals</th>
<th>Voltage</th>
<th>Blower Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL-SD</td>
<td>1VDC</td>
<td>Low Speed</td>
</tr>
<tr>
<td>RH-SD</td>
<td>24VDC</td>
<td>High Speed</td>
</tr>
<tr>
<td>RL-SD</td>
<td>24VDC</td>
<td></td>
</tr>
<tr>
<td>RH-SD</td>
<td>1VDC</td>
<td>Illegal State (replace board)</td>
</tr>
<tr>
<td>RL-SD</td>
<td>1VDC</td>
<td>Blower Off (replace board)</td>
</tr>
<tr>
<td>RH-SD</td>
<td>24VDC</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 20

TABLE 12
LVC2 BOARD BLOWER OUTPUTS
KHB092H & 102H Belt Drive Supply Air Inverter Start-Up

A-General

Units are equipped with an inverter (variable frequency drive or VFD) which provides two blower speeds. The blower will operate at lower speeds when cooling demand is low and higher speeds when cooling demand is high. This results in lower energy consumption.

Units will operate at high speed during ventilation (blower “G” only signal) but can be adjusted to operate at low speed.

Low speed is approximately 2/3 of the full speed RPM.

B-Set Maximum Blower CFM

1- Initiate a blower (G) only signal from the room thermostat or control system.

2- Adjust the blower pulley to deliver the full (high speed) CFM in the typical manner. See Determining Unit CFM in the Blower Operation and Adjustment section.

C-Set Blower Speed During Ventilation

To save energy during ventilation, the blower speed can be set to low. This is accomplished by changing the ventilation speed switch on the FCB control board to “LO”. See figure 21.

Note - On units equipped with an economizer, set damper minimum position as shown in the next section. After adjusting the low speed minimum position, the ventilation speed switch will be in the “LO” position.

D-Set Damper Minimum Position (Units W/ Economizer)

To maintain required minimum ventilation air volumes when the unit is in the occupied mode, two minimum damper positions must be set. A high and a low speed potentiometer are provided on the FCB control board to adjust minimum damper position. See figure 21.

Set High Speed Minimum Position

1- Initiate a blower (G) only AND occupied demand from the room thermostat or control system.

2- Set the ventilation speed switch on the FCB control board to “HI”.

3- Rotate the high speed potentiometer on the FCB control board to set the high speed minimum damper position.

4- Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.

Set Low Speed Minimum Position

1- Initiate a blower (G) only AND occupied demand from the room thermostat or control system.

2- Set the ventilation speed switch on the FCB control board to “LO”.

3- Rotate the low speed potentiometer on the FCB control board to set the low speed minimum damper position.

4- Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.
Troubleshoot FCB Board (A191)
Refer to wiring diagram sections B (unit), C (control) and D (economizer) located on inside of unit panels.

1- Inspect the board for damaged components. Replace the board if damaged components are found.
2- Check all wire connections to board; secure if loose.
3- Check for 24VAC signal at the thermostat blower input (G to GND terminal). See figure 24.

4- If there is no thermostat signal, troubleshoot back toward the thermostat.

5- Check the power LED on the board. See figure 23.

6- The LED should be blinking at a 1-second rate when operating normally. If the LED is dim and not blinking, this indicates power is provided but a problem exists with the board.

7- If the power LED is not on, check voltage between FCB terminals PC (H2-1) and SD (H2-5). Voltage should read 24VAC.

8- If voltage does not read 24VAC, disconnect the H2 header from the FCB VFD inputs terminal block (to make sure the FCB is not shorting 24VAC supply from the inverter). Measure the voltage between the end terminals on the H2 header. If 24VAC is present, replace the FCB board. If no voltage is read, troubleshoot the VFD.
Direct Drive Supply Air Blower Start-Up

A-General
Units are equipped with a direct drive blower which can be set at high and low speed. The blower will operate at lower speeds when demand is low and higher speeds when demand is high. This results in lower energy consumption.

B-Set Blower CFM
See figure 23.

1- Initiate a blower (G) only signal from the room thermostat or control system. The blower will operate in high speed.

2- Measure the blower RPM and static pressure and use appropriate blower table to calculate supply air CFM. See Determining Unit CFM in the Blower Operation and Adjustment section.

3- If the resulting CFM is lower than the desired CFM, rotate the fan control board high speed potentiometer clockwise (or counterclockwise if CFM is too high).

4- Calculate the CFM and adjust potentiometer as needed to meet desired CFM

5- Initiate a blower (G) AND first-stage (Y1) cooling signal from the room thermostat or control system. The blower will operate in low speed.

6- Calculate the low speed CFM in the same manner as the high speed CFM.

7- Adjust low speed potentiometer as needed to meet desired CFM.

C-Set Blower Speed During Ventilation
To save energy during ventilation, the blower speed can be set to low. This is accomplished by changing the ventilation speed switch on the FCB control board to “LO”. See figure 23.

Note - On units equipped with an economizer, set damper minimum position as shown in the next section. After adjusting the low speed minimum position, the ventilation speed switch will be in the “LO” position.

D-Set Damper Minimum Position (Units W/ Economizer)
To maintain required minimum ventilation air volumes when the unit is in the occupied mode, two minimum damper positions must be set. A high and a low speed potentiometer are provided on the FCB control board to adjust minimum damper position. See figure 19.

Set High Speed Minimum Position

1- Initiate a blower (G) only AND occupied demand from the room thermostat or control system.

2- Set the ventilation speed switch on the FCB control board to “HI”.

3- Rotate the high speed potentiometer on the FCB control board to set the high speed minimum damper position.

4- Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.
If the CFM is higher than specified, decrease the damper percent open.

Note - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.

Troubleshoot FCB Board (A191)

Refer to wiring diagram sections B (unit), C (control) and D (economizer) located on inside of unit panels.

1- Inspect the board for damaged components. Replace the board if damaged components are found.

2- Check all wire connections to board; secure if loose.

3- Check for 24VAC signal at the thermostat blower input (G to GND terminal). See figure 24.

4- If there is no thermostat signal, troubleshoot back toward the thermostat.

5- Check the power LED on the board. See figure 23.

6- The LED should be blinking at a 1-second rate when operating normally. If the LED is dim and not blinking, this indicates power is provided but a problem exists with the board.

7- If the power LED is not on, check voltage between FCB terminals PC (H2-1) and SD (H2-5). Voltage should read 24VAC.

8- If voltage does not read 24VAC, disconnect the H2 header from the FCB terminal block (to make sure the FCB is not shorting 24VAC supply from terminal strip TB1). Measure the voltage between the end terminals on the H2 header. If 24VAC is present, replace the FCB board.

Service

The unit should be inspected once a year by a qualified service technician.

CAUTION

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

A-Lubrication

All motors are lubricated at the factory. No further lubrication is required.

B-Filters

Units are equipped with four 20 X 25 X 2” filters. Filters should be checked monthly and replaced when necessary with filters of like kind and size. Take note of air flow direction marking on filter frame when reinstalling filters. See figure 25.

NOTE- Filters must be U.L.C. certified or equivalent for use in Canada.

C-Supply Air Blower Wheel

Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel.

D-Indoor Coil

Inspect and clean coil at beginning of each cooling and heating season. Clean using mild detergent or commercial coil cleanser. Flush coil and condensate drain with water taking care not to get insulation, filters and return air ducts wet.
E-Outdoor Coil

Clean condenser coil annually with detergent or commercial coil cleaner and inspect monthly during the cooling season.

Condenser coils are made of two formed slabs. Dirt and debris may become trapped between the slabs. To clean between slabs, carefully separate coil slabs and wash them thoroughly. See figure 26. Flush coils with water following cleaning.

F-Filter Drier

The unit is equipped with a bi-flow filter drier. If replacement is necessary, order another of like design.

![Clean Condenser Coil Diagram](image-url)

1. Remove screws securing coil end plate to mullion.
2. Remove clips connecting coils slabs and separate slabs 3-4” (76-102mm).
3. Clean coils with detergent or commercial coil cleaner.
4. Rinse thoroughly with water and reassemble.