General

This EL16XC1 outdoor air conditioner with all-aluminum coil is designed for use with HFC-410A refrigerant only. This unit must be installed with an approved indoor air handler or coil. See the Lennox EL16XC1 Product Specifications bulletin (EBH) for approved indoor component match ups.

These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities having jurisdiction before installation.

IMPORTANT: Special procedures are required for cleaning the aluminum coil in this unit. See page 15 in this instruction for information.

NOTICE!

For more in-depth information, consult the Installation and Service Procedures manual, available as Corp. 1503-L7 on LennoxPros.com or through the Technical Support department at 800-453-6669.

STEP 1 -- SETTING THE UNIT -- Clearances

NOTES:

Service clearance of 30 in. must be maintained on one of the sides adjacent to the control box.

Clearance to one of the other three sides must be 36 in.

Clearance to one of the remaining two sides may be 12 in. and the final side may be 6 in.

A clearance of 24 in. must be maintained between two units.

48 in. clearance required on top of unit.

NOTICE: Specific applications may require adjustment of the listed installation clearances to provide protection for the unit from physical damage or to avoid conditions which limit operating efficiency. (Example: Clearances may have to be increased to prevent snow or ice from falling on the top of the unit. Additional clearances may also be required to prevent air recirculation when the unit is installed under a deck or in another tight space.)
### UNIT DIMENSIONS - INCHES (MM)

#### EL16XC1 Dimensions - in. (mm)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL16XC1-018-230A</td>
<td>31 (787)</td>
<td>27 (686)</td>
<td>28 (711)</td>
<td>See EL16XC1-018 base section below.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL16XC1-024-230A</td>
<td>31 (787)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-030-230A</td>
<td>39 (991)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-041-230A</td>
<td>31 (787)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-042-230A</td>
<td>31 (787)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-048-230A</td>
<td>31 (787)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-036-230B</td>
<td>31 (787)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
<tr>
<td>EL16XC1-036-230C</td>
<td>35 (889)</td>
<td>30-1/2 (775)</td>
<td>35 (889)</td>
<td>13-7/8 (352)</td>
<td>7-3/4 (197)</td>
<td>3-1/4 (83)</td>
<td>27-1/8 (689)</td>
<td>3-5/8 (92)</td>
<td>4-1/2 (114)</td>
<td>20-5/8 (524)</td>
</tr>
</tbody>
</table>

#### UNIT SUPPORT FEET

- **EL16XC1-018 BASE SECTION (SMALL)**
  - 8-1/2" (216)
  - 8-3/4" (222)
  - 5-1/2" (140)
  - 13-1/2" (343)

- **EL16XC1-024 TO -060 BASE WITH ELONGATED LEGS**
  - 9-1/2" (241)
  - 8-1/4" (210)
  - 8-1/4" (210)
  - 8-1/4" (210)

---

Page 2
STEP 1 -- SETTING THE UNIT (Continued)

-- Unit Placement

NOTICE!

Roof Damage!
This system contains both refrigerant and oil. Some rubber roofing material may absorb oil, causing the rubber to degrade. Failure to follow this notice could result in damage to roof surface.

IMPORTANT!

Exhaust vents from dryers, water heaters and furnaces should be directed away from the outdoor unit. Prolonged exposure to exhaust gases and the chemicals contained within them may cause condensation to form on the steel cabinet and other metal components of the outdoor unit. This will diminish unit performance and longevity.

PLACEMENT

Install unit away from windows.

TWO 90° ELBOWS INSTALLED IN LINE SET WILL REDUCE LINE SET VIBRATION.

FIGURE 2

SLAB MOUNTING

Install unit level or, if on a slope, maintain slope tolerance of 2 degrees (or 2 inches per 5 feet [50 mm per 1.5 m]) away from building structure.

FIGURE 3

ELEVATED SLAB MOUNTING USING FEET EXTENDERS

Use additional 2” SCH 40 male threaded adapters which can be threaded into the female threaded adapters to make additional adjustments to the level of the unit.

FIGURE 4

CAUTION

Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch.

STABILIZING UNIT ON UNEVEN SURFACES

Concrete slab — use two plastic anchors (hole drill 1/4”)

FIGURE 5

IMPORTANT!

Unit Stabilizer Bracket Use (field-provided):
Always use stabilizers when unit is raised above the factory height.
(Elevated units could become unstable in gusty wind conditions.)
Stabilizers may be used on any unit installed on unstable and uneven surfaces.
WARNING

To prevent personal injury, as well as damage to panels, unit or structure, observe the following:

While installing or servicing this unit, carefully stow all removed panels so that the panels will not cause injury to personnel, objects or nearby structures. Also, take care to store panels where they will not be subject to damage (e.g., being bent or scratched).

While handling or stowing the panels, consider any weather conditions (especially wind) that may cause panels to be blown around and damaged.

STEP 2 -- REFRIGERANT PIPING —
Flushing Existing Line Set & Indoor Coil

Flush the existing line set per the following instructions. For more information, refer to the Installation and Service Procedures manual available on LennoxPros.com. CAUTION - DO NOT attempt to flush and re-use existing line sets or indoor coil when the system contains contaminants (i.e., compressor burn out).

IMPORTANT!

If this unit is being matched with an approved line set or indoor unit coil that was previously charged with mineral oil, or if it is being matched with a coil which was manufactured before January of 1999, the coil and line set must be flushed prior to installation. Take care to empty all existing traps. Polyol ester (POE) oils are used in Lennox units charged with HFC-410A refrigerant. Residual mineral oil can act as an insulator, preventing proper heat transfer. It can also clog the expansion device and reduce system performance and capacity.

Failure to properly flush the system per this instruction and the detailed Installation and Service Procedures manual will void the warranty.

---

TABLE 1
REFRIGERANT LINE SET — INCHES (MM)

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Valve Size Connections</th>
<th>L15 Line Set Length</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid Line</td>
<td>Suction Line</td>
<td>Model</td>
</tr>
<tr>
<td>EL16XC1-018-230</td>
<td>3/8&quot; (10 mm)</td>
<td>3/4&quot; (19 mm)</td>
<td>L15-41-20</td>
</tr>
<tr>
<td>EL16XC1-024-230</td>
<td>3/8&quot; (10 mm)</td>
<td>3/4&quot; (19 mm)</td>
<td>L15-41-30</td>
</tr>
<tr>
<td>EL16XC1-030-230</td>
<td>3/8&quot; (10 mm)</td>
<td>3/4&quot; (19 mm)</td>
<td>L15-41-40</td>
</tr>
<tr>
<td></td>
<td>3/8&quot; (10 mm)</td>
<td>3/4&quot; (19 mm)</td>
<td>L15-41-50</td>
</tr>
<tr>
<td>EL16XC1-036-230</td>
<td>3/8&quot; (10 mm)</td>
<td>7/8&quot; (22 mm)</td>
<td>L15-65-30</td>
</tr>
<tr>
<td>EL16XC1-041-230</td>
<td>3/8&quot; (10 mm)</td>
<td>7/8&quot; (22 mm)</td>
<td>L15-65-40</td>
</tr>
<tr>
<td>EL16XC1-042-230</td>
<td>3/8&quot; (10 mm)</td>
<td>7/8&quot; (22 mm)</td>
<td>L15-65-50</td>
</tr>
<tr>
<td>EL16XC1-047-230</td>
<td>3/8&quot; (10 mm)</td>
<td>1-1/8&quot; (29 mm)</td>
<td>Field-fabricated</td>
</tr>
<tr>
<td>EL16XC1-048-230</td>
<td>3/8&quot; (10 mm)</td>
<td>1-1/8&quot; (29 mm)</td>
<td>Field-fabricated</td>
</tr>
<tr>
<td>EL16XC1-060-230</td>
<td>3/8&quot; (10 mm)</td>
<td>1-1/8&quot; (29 mm)</td>
<td>Field-fabricated</td>
</tr>
</tbody>
</table>

NOTE - When installing refrigerant lines longer than 50 feet, refer to the Refrigerant Piping Design and Fabrication Guidelines manual available on LennoxPros.com (Corp. 9351-L9), or contact the Technical Support Department Product Application group for assistance.

NOTE - For new or replacement line set installation, refer to Service and Application Note - Corp. 9112-L4 (C-91-4).
1A TYPICAL EXISTING FIXED ORIFICE REMOVAL PROCEDURE (UNCASED COIL SHOWN)

1 - On fully cased coils, remove the coil access and plumbing panels.
2 - Remove any shipping clamps from the liquid line and distributor assembly.
3 - Using two wrenches, disconnect liquid line from liquid line orifice housing. Take care not to twist or damage distributor tubes during this process.
4 - Remove and discard fixed orifice, valve stem assembly (if present) and Teflon® washer as illustrated above.
5 - Use a field-provided fitting to temporarily reconnect the liquid line to the indoor unit’s liquid line orifice housing.

1B TYPICAL EXISTING EXPANSION VALVE REMOVAL PROCEDURE (UNCASED COIL SHOWN)

1 - On fully cased coils, remove the coil access and plumbing panels.
2 - Remove any shipping clamps from the liquid line and distributor assembly.
3 - Disconnect the equalizer line from the expansion valve equalizer line fitting on the suction line.
4 - Remove the suction line sensing bulb.
5 - Disconnect the liquid line from the expansion valve at the liquid line assembly.
6 - Disconnect the expansion valve from the liquid line orifice housing. Take care not to twist or damage distributor tubes during this process.
7 - Remove and discard expansion valve and the two Teflon® rings.
8 - Use a field-provided fitting to temporarily reconnect the liquid line to the indoor unit’s liquid line orifice housing.

2 CONNECT GAUGES AND EQUIPMENT FOR FLUSHING PROCEDURE

1 - HCFC-22 cylinder with clean refrigerant* (positioned to deliver liquid refrigerant) to the suction service valve.
2 - HCFC-22 gauge set (low side) to the liquid line valve.
3 - HCFC-22 gauge set center port to inlet on the recovery machine with an empty recovery tank connected to the gauge set.
4 - Connect recovery tank to recovery machine per machine instructions.

3 FLUSHING LINE SET

1 - Set the recovery machine for liquid recovery and start the recovery machine. Open the gauge set valves to allow the recovery machine to pull a vacuum on the existing system line set and indoor unit coil.
2 - Position the cylinder of clean HCFC-22* for delivery of liquid refrigerant and open its valve to allow liquid refrigerant to flow into the system through the suction line valve. Allow the refrigerant to pass from the cylinder and through the line set and the indoor unit coil before it enters the recovery machine.
3 - After all of the liquid refrigerant has been recovered, switch the recovery machine to vapor recovery so that all of the HCFC-22 vapor is recovered. Allow the recovery machine to pull the system down to 0.
4 - Close the valve on the inverted HCFC-22 drum and the gauge set valves. Pump the remaining refrigerant out of the recovery machine and turn the machine off.

*IMPORTANT - Clean refrigerant is any refrigerant in a system that has not had compressor burn out. If the system has experienced burn out, it is recommended that the existing line set and indoor coil be replaced.
**STEP 2 -- REFRIGERANT PIPING -- Brazing Procedures**

1. **CUT AND DEBUR**
   Cut ends of the refrigerant lines square (free from nicks or dents) and debur the ends. The pipe must remain round. Do not crimp end of the line.

2. **CAP AND CORE REMOVAL**
   Remove service cap and core from both the suction / vapor and liquid line service ports.

3. **ATTACH THE MANIFOLD GAUGE SET FOR BRAZING LIQUID AND SUCTION LINE SERVICE VALVES**
   Flow regulated nitrogen (at 1 to 2 psig) through the low-side refrigeration gauge set into the liquid line service port valve, and out of the suction line service port valve.
   - 1. Connect gauge set low pressure side to liquid line service valve (service port).
   - 2. Connect gauge set center port to bottle of nitrogen with regulator.
   - 3. Remove core from valve in suction line service port to allow nitrogen to escape.

---

**FIGURE 7**

**CAUTION**
Brazing alloys and flux contain materials which are hazardous to your health. Avoid breathing vapors or fumes from brazing operations. Perform operations only in well-ventilated areas. Wear gloves and protective goggles or face shield to protect against burns. Wash hands with soap and water after handling brazing alloys and flux.

**WARNING**
Danger of fire. Bleeding the refrigerant charge from only the high side may result in pressurization of the low side shell and suction tubing. Application of a brazing torch to a pressurized system may result in ignition of the refrigerant and oil mixture. Check the high and low pressures before applying heat.
WRAP SERVICE VALVES
To help protect service valve seals during brazing, wrap water-saturated cloths around service valve bodies and copper tube stubs. Use additional water-saturated cloths underneath the valve body to protect the base paint.

FLOW NITROGEN
Flow regulated nitrogen (at 1 to 2 psig) through the refrigeration gauge set into the valve stem port connection on the liquid service valve and out of the suction valve stem port. See steps 3A, 3B and 3C on manifold gauge set connections.

BRAZE LINE SET
Wrap both service valves with water-saturated cloths as illustrated here and as mentioned in step 4, before brazing to line set. Cloths must remain water-saturated throughout the brazing and cool-down process. IMPORTANT - Allow braze joint to cool. Apply additional water-saturated cloths to help cool brazed joint. Do not remove water-saturated cloths until piping has cooled. Temperatures above 250°F will damage valve seals.

WARNING
FIRE, PERSONAL INJURY, OR PROPERTY DAMAGE may result if you do not wrap a water-saturated cloth around both liquid and suction line service valve bodies and copper tube stub while brazing the line set! The braze, when complete, must be quenched with water to absorb any residual heat. Do not open service valves until refrigerant lines and indoor coil have been leak-tested and evacuated. Refer to Installation and Service Procedures manual found on DAVENET.

PREPARATION FOR NEXT STEP
After all connections have been brazed, disconnect manifold gauge set from service ports. Apply additional water-saturated cloths to both services valves to cool piping. Once piping is cool, remove all water-saturated cloths.

FIGURE 7 (CONTINUED)
STEP 2 — REFRIGERANT PIPING — Installing Indoor Expansion Valve

This outdoor unit is designed for use in systems that use an expansion valve metering device. See the EL16XC1 Product Specifications bulletin (EHB) for approved expansion valve kit match-ups and application information. The expansion valve can be installed internal or external to the indoor coil. In applications where an uncased coil is being installed in a field-provided plenum, install the expansion valve in a manner that will provide access for future field service of the expansion valve. Refer to below illustration for reference during installation of expansion valve.

INDOOR EXPANSION VALVE INSTALLATION

(Uncased Coil Shown)

1 - Attach the suction line sensing bulb in the proper orientation as illustrated to the right using the clamp and screws provided.

NOTE - Confirm proper thermal contact between the suction line and expansion bulb before insulating the sensing bulb once installed.

2 - Connect the equalizer line from the expansion valve to the liquid line orifice housing. Finger tighten and use an appropriately sized wrench to turn an additional 1/2 turn clockwise as illustrated in the figure above, or tighten to 20 ft-lb.

3 - Install one of the provided Teflon® rings around the stubbed end of the expansion valve and lightly lubricate the connector threads and expose surface of the Teflon® ring with refrigerant oil.

4 - Attach the stubbed end of the expansion valve to the liquid line orifice housing. Finger tighten and use an appropriately sized wrench to turn an additional 1/2 turn clockwise as illustrated in the figure above, or tighten to 20 ft-lb.

5 - Place the remaining Teflon® washer around the other end of the expansion valve. Lightly lubricate connector threads and expose surface of the Teflon® ring with refrigerant oil.

6 - Attach the liquid line assembly to the expansion valve. Finger tighten and use an appropriately sized wrench to turn an additional 1/2 turn clockwise as illustrated in the figure above or tighten to 20 ft-lb.

SENSING BULB INSTALLATION

1 - Attach the suction line sensing bulb in the proper orientation as illustrated to the right using the clamp and screws provided.

NOTE - Confirm proper thermal contact between the suction line and expansion bulb before insulating the sensing bulb once installed.

2 - Connect the equalizer line from the expansion valve to the equalizer suction port on the suction line. Finger tighten the flare nut plus 1/8 turn (7 ft-lbs) as illustrated below.

ON LINES SMALLER THAN 7/8", MOUNT SENSING BULB AT EITHER THE 3 OR 9 O'CLOCK POSITION.

ON 7/8" AND LARGER LINES, MOUNT SENSING BULB AT EITHER THE 4 OR 8 O'CLOCK POSITION. NEVER MOUNT THE SENSING BULB ON BOTTOM OF LINE.

NOTE - NEVER MOUNT THE SENSING BULB ON BOTTOM OF LINE.

FIGURE 8
STEP 3 -- LEAK TEST AND EVACUATION

CONNECT GAUGE SET
A - Connect the high pressure hose of an HFC-410A manifold gauge set to the suction valve service port.
   NOTE - Normally, the high pressure hose is connected to the liquid line port. However, connecting it to the suction port better protects the manifold gauge set from high pressure damage.

B - With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set.
   NOTE - Later in the procedure, the HFC-410A container will be replaced by the nitrogen container.

TEST FOR LEAKS
After the line set has been connected to the indoor and outdoor units, check the line set connections and indoor unit for leaks. Use the following procedure to test for leaks:

A - With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set. Open the valve on the HFC-410A cylinder (vapor only).

B - Open the high pressure side of the manifold to allow HFC-410A into the line set and indoor unit. Weigh in a trace amount of HFC-410A. [A trace amount is a maximum of two ounces (57 g) refrigerant or three pounds (31 kPa) pressure.] Close the valve on the HFC-410A cylinder and the valve on the high pressure side of the manifold gauge set. Disconnect the HFC-410A cylinder.

C - Connect a cylinder of nitrogen with a pressure regulating valve to the center port of the manifold gauge set.

D - Adjust nitrogen pressure to 150 psig (1034 kPa). Open the valve on the high side of the manifold gauge set in order to pressurize the line set and the indoor unit.

E - After a few minutes, open one of the service valve ports and verify that the refrigerant added to the system earlier is measurable with a leak detector.

F - After leak testing, disconnect gauges from service ports.

FIGURE 9
**STEP 3 -- LEAK TEST AND EVACUATION (Continued)**

### 3 CONNECT GAUGE SET

**NOTE** - Remove cores from service valves (if not already done).

A - Connect low side of manifold gauge set with 1/4 SAE in-line tee to suction line service valve

B - Connect high side of manifold gauge set to liquid line service valve

C - Connect available micron gauge connector on the 1/4 SAE in-line tee.

D - Connect the vacuum pump (with vacuum gauge) to the center port of the manifold gauge set. The center port line will be used later for both the HFC-410A and nitrogen containers.

**NOTE** - Position canister to deliver liquid refrigerant.

**WARNING**
Possible equipment damage. Avoid deep vacuum operation. Do not use compressors to evacuate a system. Extremely low vacuum can cause internal arcing and compressor failure. Damage caused by deep vacuum operation will void warranty.

### 4 EVACUATE THE SYSTEM

A - Open both manifold valves and start the vacuum pump.

B - Evacuate the line set and indoor unit to an absolute pressure of 23,000 microns (29.01 inches of mercury).

**NOTE** - During the early stages of evacuation, it is desirable to close the manifold gauge valve at least once. A rapid rise in pressure indicates a relatively large leak. If this occurs, repeat the leak testing procedure.

**NOTE** - The term absolute pressure means the total actual pressure above absolute zero within a given volume or system. Absolute pressure in a vacuum is equal to atmospheric pressure minus vacuum pressure.

C - When the absolute pressure reaches 23,000 microns (29.01 inches of mercury), perform the following:

- Close manifold gauge valves.
- Close valve on vacuum pump.
- Turn off vacuum pump.
- Disconnect manifold gauge center port hose from vacuum pump.
- Attach manifold center port hose to a nitrogen cylinder with pressure regulator set to 150 psig (1034 kPa) and purge the hose.
- Open manifold gauge valves to break the vacuum in the line set and indoor unit.
- Close manifold gauge valves.

D - Shut off the nitrogen cylinder and remove the manifold gauge hose from the cylinder. Open the manifold gauge valves to release the nitrogen from the line set and indoor unit.

E - Reconnect the manifold gauge to the vacuum pump, turn the pump on, and continue to evacuate the line set and indoor unit until the absolute pressure does not rise above 500 microns (29.9 inches of mercury) within a 20-minute period after shutting off the vacuum pump and closing the manifold gauge valves.

F - When the absolute pressure requirement above has been met, disconnect the manifold hose from the vacuum pump and connect it to a cylinder of HFC-410A positioned to deliver liquid refrigerant. Open the manifold gauge valve 1 to 2 psig in order to release the vacuum in the line set and indoor unit.

G - Perform the following:

- Close manifold gauge valves.
- Shut off HFC-410A cylinder.
- Reinstall service valve cores by removing manifold hose from service valve. Quickly install cores with core tool while maintaining a positive system pressure.
- Replace stem caps and finger tighten them, then tighten an additional one-sixth (1/6) of a turn as illustrated.
STEP 4 -- ELECTRICAL -- Circuit Sizing and Wire Routing

In the U.S.A., wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).

Refer to the furnace or air handler installation instructions for additional wiring application diagrams and refer to unit nameplate for minimum circuit ampacity and maximum overcurrent protection size.

24VAC TRANSFORMER

Use the transformer provided with the furnace or air handler for low-voltage control power (24VAC - 40 VA minimum)

**WARNING**

Electric Shock Hazard. Can cause injury or death. Unit must be properly grounded in accordance with national and local codes. Line voltage is present at all components when unit is not in operation on units with single-pole contactors. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power supplies.

**IMPORTANT**

If unit is equipped with a crankcase heater, it should be energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

**WARNING**

Failure to use properly sized wiring and circuit breaker may result in property damage. Size wiring and circuit breaker(s) per Product Specifications bulletin (EHB) and unit rating plate.

**CAUTION**

Electrostatic discharge can affect electronic components. Take care during unit installation and service to protect the unit’s electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Touch hand and all tools on an unpainted unit surface before performing any service procedure to neutralize electrostatic charge.

**CAUTION**

Electrostatic discharge can affect electronic components. Take care during unit installation and service to protect the unit’s electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Touch hand and all tools on an unpainted unit surface before performing any service procedure to neutralize electrostatic charge.

**NOTE**

- Units are approved for use only with copper conductors. Ground unit at disconnect switch or connect to an earth ground.

**NOTE**

- 24VAC, Class II circuit connections are made in the control panel.

**INSTALL THERMOSTAT**

Install room thermostat (ordered separately) on an inside wall approximately in the center of the conditioned area and 5 feet (1.5m) from the floor. It should not be installed on an outside wall or where it can be affected by sunlight or drafts.

**SIZE CIRCUIT AND INSTALL SERVICE DISCONNECT SWITCH**

Refer to the unit nameplate for minimum circuit ampacity, and maximum fuse or circuit breaker (HACR per NEC). Install power wiring and properly sized disconnect switch.

**FigURE 11**
STEP 4 -- ELECTRICAL (CONTINUED) -- Field Wiring

Unit Low Voltage Wiring

A - Run 24VAC control wires through cutout with grommet.
B - Run 24VAC control wires through wire tie.
C - Make 24VAC control wire connections using field-provided wire nuts.
D - Tighten wire tie to secure 24V control wiring.

NOTE: FOR PROPER VOLTAGES, SELECT THERMOSTAT WIRE (CONTROL WIRES) GAUGE PER TABLE ABOVE.
NOTE: WIRE TIE PROVIDES LOW VOLTAGE WIRE STRAIN RELIEF AND MAINTAINS SEPARATION OF FIELD-INSTALLED LOW AND HIGH VOLTAGE CIRCUITS.
NOTE: DO NOT BUNDLE ANY EXCESS 24VAC CONTROL WIRES INSIDE CONTROL BOX.

WIRE RUN LENGTH | AWG# | INSULATION TYPE
-----------------|------|---------------------
LESS THAN 100' (30 METERS) | 18 | TEMPERATURE RATING
MORE THAN 100' (30 METERS) | 16 | 35ºC MINIMUM.

24VAC Control Wiring Diagrams (Field Installed)

NOTE - Refer to furnace, blower coil and accessory instructions for additional wiring configurations with other optional controls.

Air handler shipped with jumpers installed between W1 and W2 and W2 and W3.
R connection required for air conditioner with LSOM. Resistor kit (CAT #47W97) required when connection ComfortSense 7000 with LSOM 2.
L connection wired on units with LSOM.

FIGURE 12

FIGURE 13
STEP 5 -- UNIT START-UP

IMPORTANT
If unit is equipped with a crankcase heater, it should be energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

1 - Rotate fan to check for binding.
2 - Inspect all factory- and field-installed wiring for loose connections.
3 - After evacuation is complete, open the liquid line and suction line service valve stems to release the refrigerant charge (contained in outdoor unit) into the system.
4 - Replace the stem caps and tighten to the value listed in table 2.
5 - Check voltage supply at the disconnect switch. The voltage must be within the range listed on the unit's nameplate. If not, do not start the equipment until you have consulted with the power company and the voltage condition has been corrected.
6 - Connect manifold gauge set for testing and charging using figure 11 as a guideline.
7 - Set the thermostat for a cooling demand. Turn on power to the indoor unit and close the outdoor unit disconnect switch to start the unit.
8 - Recheck voltage while the unit is running. Power must be within range shown on the unit nameplate.
9 - Check system for sufficient refrigerant using the procedures outlined in under System Refrigerant.

OPERATING MANIFOLD GAUGE SET AND SERVICE VALVES
The liquid and suction line service valves are used for removing refrigerant, flushing, leak testing, evacuating, checking charge and charging.

Each valve is equipped with a service port which has a factory-installed valve stem. Figures 14 and 15 provide information on how to access and operate both angle- and ball-type service valves.

**Torque Requirements**
When servicing or repairing heating, ventilating, and air conditioning components, ensure the fasteners are appropriately tightened. Table 2 lists torque values for fasteners.

**TABLE 2**
<table>
<thead>
<tr>
<th>Parts</th>
<th>Recommended Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service valve cap</td>
<td>8 ft.-lb. 11 NM</td>
</tr>
<tr>
<td>Sheet metal screws</td>
<td>16 in.-lb. 2 NM</td>
</tr>
<tr>
<td>Machine screws #10</td>
<td>28 in.-lb. 3 NM</td>
</tr>
<tr>
<td>Compressor bolts</td>
<td>90 in.-lb. 10 NM</td>
</tr>
<tr>
<td>Gauge port seal cap</td>
<td>8 ft.-lb. 11 NM</td>
</tr>
</tbody>
</table>

**IMPORTANT**
To prevent stripping of the various caps used, the appropriately sized wrench should be used and fitted snugly over the cap before tightening.

Using Manifold Gauge Set
When checking the system charge, only use a manifold gauge set that features low loss anti-blow back fittings.

Manifold gauge set used with HFC-410A refrigerant systems must be capable of handling the higher system operating pressures. The gauges should be rated for use with pressures of 0 - 800 psig on the high side and a low side of 30" vacuum to 250 psig with dampened speed to 500 psi. Gauge hoses must be rated for use at up to 800 psig of pressure with a 4000 psig burst rating.

**OPERATING BALL-TYPE SERVICE VALVE:**
1 - Remove stem cap with an appropriately sized wrench.
2 - Use an appropriately sized wrench to open. To open valve, rotate stem counterclockwise 90°. To close rotate stem clockwise 90°.

**OPERATING ANGLE-TYPE SERVICE VALVE:**
1 - Remove stem cap with an appropriately sized wrench.
2 - Use a service wrench with a hex-head extension (3/16" for liquid line valve sizes and 5/16" for suction line valve sizes) to back the stem out counterclockwise as far as it will go.

![Figure 14](image1)

![Figure 15](image2)
TO ACCESS SERVICE PORT:
A service port cap protects the service port core from contamination and serves as the primary leak seal.
1 - Remove service port cap with an appropriately sized wrench.
2 - Connect gauge set to service port.
3 - When testing is completed, replace service port cap and tighten as follows:
   ● With torque wrench: Finger tighten and torque cap per table 2.
   ● Without torque wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/6 turn clockwise.

Reinstall Stem Cap:
Stem cap protects the valve stem from damage and serves as the primary seal. Replace the stem cap and tighten as follows:
   ● With Torque Wrench: Finger tighten and then torque cap per table 2.
   ● Without Torque Wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/12 turn clockwise.

Checking and Adding System Charge
The EL16XC1 unit is factory-charged with enough HFC-410A refrigerant to accommodate a 15-foot length of refrigerant piping. Charge should be checked and adjusted using the tables provided on the charging procedure sticker on the unit access panel. Detailed information is given in the EL16XC1 Installation and Service Procedures manual (Corp1503-L7), which is available on DaveNet.

Important!
Some scroll compressors have an internal vacuum protector that will unload scrolls when suction pressure goes below 20 psig. A hissing sound will be heard when the compressor is running unloaded. Protector will reset when low pressure in system is raised above 40 psig. DO NOT REPLACE COMPRESSOR.

High Pressure Switch (S4)
This unit is equipped with a high pressure switch which is located on the liquid line. The SPST, normally closed pressure switch opens when liquid line pressure rises above the factory setting of 590 ± 15 psig and automatically resets at 418 ± 15 psig.

Homeowner Information

Caution
Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch.

In order to ensure peak performance, your system must be properly maintained. Clogged filters and blocked airflow prevent your unit from operating at its most efficient level. The system should be inspected and serviced before each cooling season by a licensed professional HVAC service technician (or equivalent).

Homeowner Maintenance
The following maintenance may be performed by the homeowner:
   ● Contact a licensed professional HVAC technician to schedule a yearly inspection and maintenance appointment for your equipment.
   ● Check the indoor unit filter each month and replace the filter, if necessary.
   ● Check the indoor unit drain line for obstructions monthly during the cooling season.
   ● Check the indoor unit drain line for obstructions monthly during the cooling season.
   ● Check the indoor unit drain line for obstructions monthly during the cooling season.
   ● Check the indoor unit drain line for obstructions monthly during the cooling season.

Important!
Sprinklers and soaker hoses should not be installed where they could cause prolonged exposure to the outdoor unit by treated water. Prolonged exposure of the unit to treated water (i.e., sprinkler systems, soakers, waste water, etc.) will corrode the surface of steel and aluminum parts, diminish performance and affect longevity of the unit.

Thermostat Operation
See the thermostat owner's manual for instructions on how to operate your thermostat.

Preservice Check
If your system fails to operate, check the following before calling for service:
   ● Verify room thermostat settings are correct.
   ● Verify that all electrical disconnect switches are ON.
- Check for any blown fuses or tripped circuit breakers.
- Verify unit access panels are in place.
- Verify air filter is clean.
- If service is needed, locate and write down the unit model number and have it handy before calling.

**Professional Maintenance**

Your heating and air conditioning system should be inspected and maintained twice each year (before the start of the heating and cooling seasons) by a licensed professional HVAC technician. You can expect the technician to check the following items. These checks may only be conducted by a licensed professional HVAC technician.

**Outdoor Unit**

1. Inspect component wiring for loose, worn or damaged connections. Also check for any rubbing or pinching of wires. Confirm proper voltage plus amperage for outdoor unit.

2. Check the cleanliness of outdoor fan and blade assemblies. Check condition of fan blades (cracks). Clean or replace them, if necessary.

3. Inspect base pan drains for debris and clean as necessary.

4. Inspect the condition of refrigerant piping and confirm that pipes are not rubbing copper-to-copper. Also, check the condition of the insulation on the refrigerant lines. Repair, correct, or replace as necessary.

5. Test capacitor. Replace as necessary.

6. Inspect contactor contacts for pitting or burn marks. Replace as necessary.

7. Check outdoor fan motor for worn bearings/bushings. Replace as necessary.

8. Inspect and clean outdoor coils, if necessary and note any damage to coils or signs of leakage.

**Indoor Unit (Air Handler or Furnace)**

1. Inspect component wiring for loose, worn or damaged connections. Confirm proper voltage plus amperage for indoor unit.

2. Inspect and clean or replace air filters in indoor unit.

3. Check the cleanliness of indoor blower and clean blower, if necessary.

4. Inspect the evaporator coil (Indoor) drain pans and condensate drains for rust, debris, obstructions, leaks or cracks. Pour water in pans to confirm proper drainage from the pan through to the outlet of the pipe. Clean or replace as necessary.

5. Inspect and clean evaporator (indoor) coil, if necessary.

6. Inspect the condition of the refrigerant lines and confirm that pipes are not rubbing copper-to-copper. Also, ensure that refrigerant pipes are not being affected by indoor air contamination. Check condition of insulation on the refrigerant lines. Repair, correct, or replace as necessary.

7. Inspect the duct system for leaks or other problems. Repair or replace as necessary.

8. Check for bearing/bushing wear on indoor blower motor. Replace as necessary.

9. Indoor unit inspections of gas- or oil-fired furnaces will also include inspection and cleaning of the burners and a full inspection of the gas valve, heat exchanger and flue (exhaust) system.

**General System Test with System Operating**

1. Your technician should perform a general system test. He will turn on the air conditioner to check operating functions such as the start-up and shut-off operation. He will also check for unusual noises or odors, and measure indoor/outdoor temperatures and system pressures as needed. He will check the refrigerant charge per the charging sticker information on the outdoor unit.

2. Verify that system total static pressure and airflow settings are within specific operating parameters.

3. Verify correct temperature drop across indoor coil.

### NOTICE !

Failure to follow instructions will cause damage to the unit. This unit is equipped with an aluminum coil. Aluminum coils may be damaged by exposure to solutions with a pH below 5 or above 9. The aluminum coil should be cleaned using potable water at a moderate pressure (less than 50psi). If the coil cannot be cleaned using water alone, Lennox recommends use of a coil cleaner with a pH in the range of 5 to 9. The coil must be rinsed thoroughly after cleaning. In coastal areas, the coil should be cleaned with potable water several times per year to avoid corrosive buildup (salt).
### EL16XC1 Start-Up and Performance Checklist

<table>
<thead>
<tr>
<th>Customer</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Unit Model</td>
<td>Serial</td>
</tr>
<tr>
<td>Outdoor Unit Model</td>
<td>Serial</td>
</tr>
</tbody>
</table>

**Notes:**

---

**START UP CHECKS**

Refrigerant Type: ____________

<table>
<thead>
<tr>
<th>Rated Load Amps</th>
<th>Actual Amps</th>
<th>Rated Volts</th>
<th>Actual Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>___</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Condenser Fan Full Load Amps: _______  Actual Amps: ___

**COOLING MODE**

Suction Pressure: _______  Liquid Pressure: _______

<table>
<thead>
<tr>
<th>Supply Air Temperature</th>
<th>Ambient Temperature</th>
<th>Return Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

System Refrigerant Charge (Refer to manufacturer's information on unit or installation instructions for required subcooling and approach temperatures.)

<table>
<thead>
<tr>
<th>Subcooling:</th>
<th>A — B = SUBCOOLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat Cond Temp (A) minus Liquid Line Temp (B)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach:</th>
<th>A — B = APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Line Temp (A) minus Outdoor Air Temp (B)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Coil Temperature Drop (18 to 22°F)</th>
<th>A — B = COIL TEMP DROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Air Temperature (A) minus Supply Air Temp (B)</td>
<td></td>
</tr>
</tbody>
</table>