3WMB036 Wall-Mounted Indoor Unit matched with 3PB036 Heat Pump Outdoor Unit

GENERAL

Refer to the Product Specifications bulletin (EHB) for more product information. These instructions are intended as a general guide and do not supersede local or national codes in any way. Authorities having jurisdiction should be consulted before installation.

This wall-mounted indoor unit is matched with an outdoor heat pump unit to create a mini-split system that uses HFC-410A refrigerant.
Included Parts

Package 1 of 1 contains the following:

1 - Assembled Indoor Unit

The assembled indoor unit will include the following items:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Figure</th>
<th>Quantity</th>
<th>Parts</th>
<th>Figure</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0STAT60Q-1 Wireless controller</td>
<td></td>
<td>1</td>
<td>Installation instruction and wireless controller user guide.</td>
<td></td>
<td>1 ea.</td>
</tr>
<tr>
<td>Wireless control holder with 2 mounting screws</td>
<td></td>
<td>1</td>
<td>Mounting plate</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Batteries (AAA)</td>
<td></td>
<td>2</td>
<td>Mounting plate securing screws</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Plastic screw anchors</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - Assembled Outdoor Unit and the following items:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Figure</th>
<th>Quantity</th>
<th>Parts</th>
<th>Figure</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain connector</td>
<td></td>
<td>1</td>
<td>Seal ring</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Model Number Identification

OUTDOOR SINGLE ZONE HEAT PUMP UNITS

- **Series Type**: 3 = 3 ton outdoor unit for 3PB/3WMB Wall-Mount system
- **Unit Type**: P = Heat Pump
- **Major Design Sequence**: B = 2nd Generation
- **Nominal Cooling Capacity**: 036 = 3 tons
- **Voltage**: P = 208/230V-1 phase-60hz
- **Minor Design Sequence**: 1 = 1st Revision
- **Refrigerant Circuits**: S = Single Circuit
- **Refrigerant Type**: 4 = HFC-410A
- **Cooling Efficiency**: S = Standard Efficiency

WALL-MOUNTED INDOOR UNITS

- **Series Type**: 3 = 3 ton indoor unit for 3PB/3WMB Wall-Mount system
- **Unit Type**: WM = Wall-Mounted Non-Ducted Unit
- **Major Design Sequence**: B = 2nd Generation
- **Nominal Cooling Capacity**: 036 = 3 tons
- **Voltage**: P = 208/230V-1 phase-60hz
- **Minor Design Sequence**: 1 = 1st Revision
- **Refrigerant Type**: 4 = HFC-410A
- **Cooling Efficiency**: S = Standard Efficiency
Indoor / Outdoor Unit Match-Ups

<table>
<thead>
<tr>
<th>Outdoor Unit</th>
<th>Indoor Unit</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3PB036S4S-1P</td>
<td>3WMB036S4-1P</td>
<td>208/230V</td>
</tr>
</tbody>
</table>

Typical System Components

IMPORTANT - The refrigerant metering device for this system is located in the outdoor unit. This makes it necessary to insulate the refrigerant lines individually to prevent sweating.

Figure 1. Typical System Shown
Figure 2. Outdoor Unit Dimensions - Inches (mm)
Indoor Units

Figure 3. Indoor Unit Dimensions - Inches (mm)

3WMB036S4

Figure 4. Indoor Unit Wall Plate Dimensions - Inches (mm)

Left rear side refrigerant pipe inlet
2-1/2 (64) diameter

Right rear side refrigerant pipe inlet
2-1/2 (64) diameter

13-1/2 (343)

46-3/4 (1187)

42-1/2 (1080)

10-1/4 (260)

10-7/8 (276)

10-1/8 (257)

7/8 (22)

1-3/4 (44)

13-1/2 (343)
System Clearances

Outdoor Unit

![Diagram of Outdoor Unit Clearances]

1 Minimum rear clearance can be 6 inches (152 mm) when mounted on brackets and with no obstructions on the other three sides.

Figure 5. Outdoor Unit Clearances - Inches (mm)

Indoor Unit

![Diagram of Indoor Unit Clearances]

Vertical Clearance - Clearance to Floor - 72 inches (1829 mm) Minimum 96 inches (2438 mm) Recommended

Figure 6. Indoor Unit Clearances - Inches (mm)
Torque Requirements for Caps and Fasteners

When servicing or repairing HVAC components, ensure the fasteners are appropriately tightened. “Table 1. Torque Requirements” on page 8 provides torque values for fasteners.

IMPORTANT

Only use Allen wrenches of sufficient hardness (50Rc - Rockwell scale minimum). Fully insert the wrench into the valve stem recess. Service valve stems are factory-torqued from 9 ft.-lbs. (12 N*m) for small valves, to 25 ft.-lbs. (34 N) for large valves to prevent refrigerant loss during shipping and handling. Using an Allen wrench rated at less than 50Rc risks rounding or breaking off the wrench, or stripping the valve stem recess.

See the Lennox Service and Application Notes C-08-1 for further details and information.

Table 1. Torque Requirements

<table>
<thead>
<tr>
<th>Parts</th>
<th>Recommended Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S.</td>
</tr>
<tr>
<td>Service valve cap</td>
<td>8 ft.-lb.</td>
</tr>
<tr>
<td>Sheet metal screws</td>
<td>16 in.-lb.</td>
</tr>
<tr>
<td>Machine screws #10</td>
<td>27 in.-lb.</td>
</tr>
<tr>
<td>Compressor bolts</td>
<td>7 ft.-lb.</td>
</tr>
<tr>
<td>Gauge port seal cap</td>
<td>8 ft.-lb.</td>
</tr>
</tbody>
</table>

Indoor Unit Installation

CAUTION

In order to avoid injury, take proper precaution when lifting heavy objects.

Unit Placement Considerations

AVOID

Do not install the unit in the following locations:

- Areas exposed to petrochemicals or petrochemical products.
- Areas exposed to salt or other corrosive materials or caustic gases.
- Areas exposed to extreme voltage variations (such as factories.
- Tightly enclosed areas that may impede service of the unit.
- Areas exposed to fossil fuels (such as oil or gas in kitchens).
- Areas exposed to strong electromagnetic forces.
- Areas exposed to acids or alkaline detergents.

DO

- Place the unit so that it is not exposed to direct sunlight.
- Ensure the structural ceiling can support the weight of the unit.
- Select a location where condensate line will have the shortest run to a suitable drain per local codes.
- Allow sufficient space around unit for proper operation and maintenance.
- Install unit a minimum of 3 feet (1m) away from any antenna, power cord (line) radio, telephone, security system, or intercom. Electrical interference and radio frequencies from any of these sources may affect operation.
- Be sure to instruct customers how to properly operate the unit (especially maintenance of air filter, and operation procedure) by having them carry out operations themselves while looking at the manual provided with the controller.

Determining Wall Mounting Plate Location

1. Remove the wall mounting plate from the back of the indoor unit.
2. Determine the best exit location for utility bundle (line set, condensate line and wiring). See the following section concerning wall sleeve installation instructions.
3. Position the wall mounting plate on the wall so that, when installed, the unit will be at least 6 inches (152 mm) from the ceiling and 5 inches (127 mm) from the wall on either side. The wall mounting plate must be level side-to-side.
4. Use the wall mounting plate as a template to determine the exit point for utility bundle. Mark the wall to facilitate drilling hole for utility bundle.

Installation of Wall Mounting Plate

Install the wall mounting plate (see “Figure 4. Indoor Unit Wall Plate Dimensions - Inches (mm)” on page 6) so that it is correctly positioned horizontally and vertically. The indoor unit must be installed level on the wall to allow proper condensate drainage.

1. Use a carpenter’s level or measuring tape to verify the wall mounting plate is horizontally level.
2. Secure the wall mounting plate to the wall using the provided screws and screw anchors.

NOTE: It is important to use all screws provided to secure the wall mounting plate to the wall. Additional holes may be drilled through the metal wall mounting plate to better secure wall plate. Field-provided anchors/
fixings may be required depending on wall construction. Use the appropriate type of anchors for the application.

3. The wall mounting plate must be installed flush against the wall so that the indoor unit will be flush after installation. Any space between the wall and unit will cause noise and vibration.

4. The wall mounting plate must be installed horizontally level on the wall.

Installation of Wall Sleeve

The utility bundle may be routed out of the back of the unit or out either side. If the bundle is to be routed out the back through an external wall, use a field-provided wall sleeve to protect the utility bundle.

NOTE: If the utility bundle will be routed out the side of the indoor unit and up the wall above a false ceiling, continue to the next section.

1. Prior to making the hole and installing the wall sleeve for the utility bundle, check to ensure that there are no other utilities located in the wall behind the hole location.

2. Cut a hole in the wall using a suitable hole saw. Hole should be at a slight downward slant - 3/16" to 3/8" toward the outdoor side.

3. Measure the thickness of the wall from the inside edge to the outside edge and cut the field-provided wall sleeve at a slight angle 1/4" (6 mm) shorter than the thickness of the wall.

![Figure 8. Boring Hole for Wall Sleeve](image)

Figure 8. Boring Hole for Wall Sleeve

Note: Use suitable tool to cut PVC for wall sleeve at slight angle as shown.

![Figure 9. PVC Wall Sleeve Installation](image)

Figure 9. PVC Wall Sleeve Installation

NOTE: When passing bundled services through an exterior brick or concrete wall, protect the copper pipes and wiring from the effects of these construction materials by using a sleeve made of suitable material. The integrity of copper pipe and wiring can deteriorate when exposed to these construction materials.

Installation of Indoor Unit on Wall Mounting Plate

1. A length of field-provided flexible condensate piping should be connected to the drain prior to securing the unit to the wall mounting plate.

2. If the factory-provided refrigerant piping connections and field-provided flexible condensate piping are long enough to enable final field connections after unit is installed on wall mounting plate, use field-provided tape to bundle them together.

3. The utility bundle may be routed out of the back of the unit or out either side. If the bundle is to be routed out the back through an external wall, feed the utility bundle through the wall sleeve. If the utility bundle is to be routed out of the side of the indoor unit and up an inside wall, carefully form the utility bundle so that it makes a gentle 90° turn.

4. Align the back of the indoor unit with the hooks at the top of the wall mounting plate. Move the unit from side to side to make sure that it settles securely.

5. The bottom of the unit can be lifted to facilitate refrigerant piping and condensate drain connections, if necessary.

![Figure 10. Secure Unit to Wall Mounting Plate](image)

Figure 10. Secure Unit to Wall Mounting Plate

Indoor Unit Condensate Piping Connections

IMPORTANT

Make sure that drain piping is properly routed and insulated to prevent both leaks and condensation.

1. Use a field-provided hose clamp to secure the drain line stub on the side of the cabinet to a field-supplied 1-inch (25 mm) drain line.

NOTE: Take care not to over-tighten the hose clamps this may damage the drain line stub.

NOTE: Connection between stub and drain line must be watertight. Apply non-hardening plumbing joint compound if needed to ensure a watertight seal.

2. Confirm proper slope (not less than 1/4 inch per foot (18 mm per meter) and routing of condensate lines to ensure moisture is drained away from the indoor unit.
3. Drain should be as short as possible and should not have any droops or kinks that would restrict condensate flow and shall be approved resistant pipe. There must be a 2-inch (51 mm) space between the end of the condensate drain and the final termination point (ground, open drain, etc.) to ensure that the line will drain freely.

4. After the system installation is complete, the condensate drain line must be checked for leaks and proper drainage. If a field-provided condensate pump has been installed, it must be checked to ensure proper operation. This check is part of the start-up process which must be done by the installing contractor.

IMPORTANT

Drain should have a slope of at least ¼ inch per foot and should be approved corrosion-resistant pipe. You must confirm operation of every drain and pump in the system as part of the commissioning procedure.

![Correct Drainage](image)

Figure 11. Condensate Line

Outdoor Unit Installation

CAUTION

In order to avoid injury, take proper precaution when lifting heavy objects.

Placement Considerations

Consider the following when positioning the unit:

- In coastal areas or other places with salty atmosphere of sulfate gas, corrosion may shorten the life of the unit. In coastal areas, the coil should be cleaned with potable water several times per year to avoid corrosive buildup (salt).
- Some localities are adopting sound ordinances based on the unit’s sound level registered from the adjacent property, not from the property where the unit is installed. Install the unit as far as possible from the property line.
- When possible, do not install the unit directly outside a window. Glass has a very high level of sound transmission.
- Install unit level.

Direct Sunlight, Rain, Snow and Ice Protection

- If the outdoor unit is subjected to prolonged exposure to direct sunlight with temperatures over 100°F (38°C) a canopy is recommended as illustrated in “Figure 13. Outdoor Unit on Pedestal and Protective Canopy” or “Figure 18. Dog House-Style Shelter” on page 12.

IMPORTANT

The construction of a canopy or shade is necessary because of an ambient limit control set to 122°F (50°C) to protect the electronics. If the outdoor unit is placed in direct sunlight it is possible that the limit may activate and shut down the unit.
• Place unit away from overhanging roof lines which would allow water or ice to drop on, or in front of, coil or into unit. Construct a canopy as illustrated in “Figure 13. Outdoor Unit on Pedestal and Protective Canopy”.

• The unit base should be elevated above the depth of average snows as illustrated in “Figure 14. Outdoor Unit on Brackets above Snow Line”.

• In heavy snow areas, do not place the unit where drifting will occur as illustrated in “Figure 15. Outdoor Unit Air Flow Obstructed by Snow”.

• Carefully consider how to manage defrost water disposal to prevent ice from blocking walkways or creating a safety hazard near the outdoor unit as illustrated in “Figure 16. Avoid Defrost Water Ice Hazard”.

Prevailing Winds

Normally wind baffles are not required for a outdoor unit. However, in order to maximize reliability and performance, the following best practices should be followed.

If unit coil cannot be installed away from prevailing winter winds, some method of protecting the coil is recommended. However, minimum clearances as reference in “Figure 6. Indoor Unit Clearances - Inches (mm)” on page 7 must be observed at all times.

Common application examples are:

• When prevailing winds are from the air inlet side, then position the wind barrier a minimum of 12 inches (305 mm) from the unit as illustrated in “Figure 17. Wind Barrier”.

• When prevailing wind is into the discharge side, then position the wind barrier a minimum 79 inches (2007 mm) from the front of the unit as illustrated in Figure 14. Wind Barrier”.

• Outdoor unit can be installed in a dog house style shelter as illustrated in “Figure 18. Dog House-Style Shelter”.

![Figure 13. Outdoor Unit on Pedestal and Protective Canopy](image)

![Figure 14. Outdoor Unit on Brackets above Snow Line](image)

![Figure 15. Outdoor Unit Air Flow Obstructed by Snow](image)

![Figure 16. Avoid Defrost Water Ice Hazard](image)
• Outdoor unit can be installed in a alcove or under a roof overhang as illustrated in “Figure 19. Unit Installed in Alcove”.

• In addition to insulating each line of piping, buried lines must rest inside a sealed, watertight conduit.

• The conduit must be designed so it cannot collect and retain water.

Outdoor Unit Condensate Piping

Condensate formed during the heating and defrost processes must be drained from heat pump units. Drain holes are provided in the base of the units to ensure proper drainage. Heat pumps must be raised when installed on a concrete pad or the ground to allow drainage to occur. If the heat pump unit is installed on wall mounting bracket, insert the provided drain connector into one of the 1 inch (25 mm) drain holes and attached a field-provided insulated drain hose to the connector. Use field-provided rubber plugs to cover any unused drain holes as illustrated in “Figure 20. Condensate Drain”.

Securing the Outdoor Unit

Slab or Roof Mounting

Install the unit a minimum of 4 inches (102 mm) above the roof or ground surface to avoid ice build-up around the unit. Place the unit above a load bearing wall or area of the roof that can adequately support the unit. Consult local codes for rooftop applications.

CAUTION

Roof Damage!

This system contains both refrigerant and oil. Some rubber roofing material may absorb oil. This will cause the rubber to swell when it comes into contact with oil. The rubber will then bubble and could cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface.

Securing Outdoor Unit to Slab, Frame, or Rails

If the outdoor unit is installed on a field-provided slab or frame, use lag bolts or equivalent to secure the outdoor unit to the slab or frame.

Buried Refrigerant Pipe Protection

• All refrigerant lines must be insulated regardless of if it is buried.
Securing Outdoor Unit to Slab

Figure 21. Securing Outdoor Unit to Slab

Four Field-provided Anchor Bolts

Securing Outdoor Unit to Rails

Figure 22. Securing Outdoor Unit to Rails

Securing Outdoor Unit to Hanging Brackets

If the outdoor unit is installed on field-provided wall mounting brackets, use lag bolts or equivalent to secure the outdoor unit to the bracket. Minimum rear clearance can be reduced to 6 inches (152 mm) when mounted on brackets and with no obstructions on the other three sides. Allow for condensate disposal when placing units above one another.

Figure 23. Securing Outdoor Unit to Brackets

Figure 22. Securing Outdoor Unit to Rails

Figure 24. Cutting Piping

1. Choose the correct pipe sizes for your application using “Table 3. Refrigerant Piping and Indoor Unit Connection Sizes” on page 14.
2. Confirm that you are using the correct diameter piping.
3. Determine the necessary piping length required for the application.
4. Cut the selected pipes with a pipe cutter. Make the cuts flat and smooth as illustrated in “Figure 24. Cutting Piping”.
5. Insulate the copper piping.
6. Insert a flare nut onto each pipe before flaring.
7. Use “Table 2. Flaring Pipe” to properly flare the pipe.

Table 2. Flaring Pipe

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Flare Dimension A (mm)</th>
<th>Flare Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>1/4” (6.35)</td>
<td>8.3</td>
<td>8.7</td>
</tr>
<tr>
<td>3/8” (9.62)</td>
<td>12.0</td>
<td>12.4</td>
</tr>
<tr>
<td>1/2” (9.52”)</td>
<td>15.4</td>
<td>15.8</td>
</tr>
<tr>
<td>5/8” (15.9)</td>
<td>18.6</td>
<td>19.1</td>
</tr>
<tr>
<td>3/4” (22.9)</td>
<td>22.9</td>
<td>23.3</td>
</tr>
</tbody>
</table>

8. After flaring the pipe, temporarily sealed pipe ends with adhesive tape to avoid contaminants from entering the pipes.
9. The seal on the unit refrigerant piping connections should remain in place until the last possible moment. This will prevent dust or water from getting into the refrigerant piping before it is connected.
10. **CAREFULLY** adjust refrigerant piping connections to suit the application.
11. Slowly loosen one of the flare nuts to release the factory nitrogen charge from the indoor units only.

Refigerant Piping Connections

Field piping consists of two copper lines connecting the outdoor unit to the indoor unit. “Table 3. Refrigerant Piping and Indoor Unit Connection Sizes” on page 14 lists the connection sizes. The connections are made using the provided brass flare nuts at the end of the refrigerant piping connections.
12. Remove the flare nuts from the connections on the unit and discard the seal from each of the piping connections.

13. Slide the flare nuts onto the ends of the field-provided refrigerant piping before using a suitable flaring tool to flare the end of the copper pipe.

14. Apply recommended HFC-410A refrigerant lubricant to the outside of the flared refrigerant lines.

IMPORTANT

The compressor in this unit contains PVE oil (Polyvinylether). PVE oil is formulated for hydrofluorocarbon (HFC) refrigerants, such as HFC-410A, which this system contains. While it may have some miscibility properties with mineral-based oil and POE oil (Polyolester), it is not recommended to mix PVE oil with any other type of refrigerant oil.

15. Align the threaded connections with the flared refrigerant lines. Tighten the flare nuts lightly at first to obtain a smooth match as illustrated in “Figure 25. Making Connections (Male to Female Connection)”.

<table>
<thead>
<tr>
<th>Size (Btuh)</th>
<th>Liquid Line in.</th>
<th>Suction Line in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36000</td>
<td>3/8</td>
<td>5/8</td>
</tr>
</tbody>
</table>

IMPORTANT

Always use two wrenches when tightening flare nuts to avoid twisting refrigerant piping. DO NOT over-tighten flare nuts.

16. Once snug, continue another half-turn on each nut which should create a leak-free joint. A torque wrench may be used to tighten flare nuts using “Table 4. Flare Nut Torque Recommendations”. Do not over-tighten a flared joint. Flared connections should always be accessible and must be insulated to prevent condensation.

17. After refrigerant piping has been installed and checked for leaks, apply insulation over all flared connections.

Table 3. Refrigerant Piping and Indoor Unit Connection Sizes

Figure 25. Making Connections (Male to Female Connection)

Figure 26. Tighten Flare Nut

Table 4. Flare Nut Torque Recommendations

<table>
<thead>
<tr>
<th>Outside Diameter</th>
<th>Recommended Torque</th>
<th>No torque wrench available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>26 ft.-lb. (35 N)</td>
<td>1/2 turn</td>
</tr>
<tr>
<td>5/8</td>
<td>48 ft.-lb. (65 N)</td>
<td>1 full turn</td>
</tr>
</tbody>
</table>
Table 5. Refrigerant Line Set Requirements

<table>
<thead>
<tr>
<th>System Size (KBtu)</th>
<th>Line Set Diameters (in.)</th>
<th>Maximum Elevation Outdoor Unit BELOW Indoor Unit - Feet (Meter)</th>
<th>Maximum Elevation Outdoor Unit ABOVE Indoor Unit - Feet (Meter)</th>
<th>Maximum Line Set Length - Feet (Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>036</td>
<td>3/8</td>
<td>98 ft. (30 m)</td>
<td>98 ft. (30 m)</td>
<td>213 ft. (65 m)</td>
</tr>
<tr>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT

Do not allow for excess length of line sets to be left rolled up as part of the required distance, or in general. This will also cause additional performance issues.

Each system size has a line set length and vertical elevation parameters.

Leak Test and Evacuation

Air and moisture remaining in the refrigerant system will have undesirable effects as indicated below:
- Pressure in the system rises.
- Operating current rises.
- Cooling or heating efficiency drops.
- Moisture in the refrigerant circuit may freeze.
- Water may lead to corrosion of parts in the refrigeration system.

The line set between the indoor and outdoor units must be leak tested and evacuated to remove any non-condensables and moisture from the system.

Leak Test

Use the following procedure to test for system leaks:

1. Connect the manifold gauge set and dry nitrogen gas cylinder to the suction and gas service ports.
2. Open valve on nitrogen cylinder.
3. Pressurize the system per the pressure test specifications in “Table 6. Pressure Test Specifications”.
4. Check that the system pressure remains stable. If there is any movement check system for leaks.
5. After the system is found to be free of leaks:
 - Close valve on nitrogen cylinder.
 - Relieve the nitrogen pressure by: loosening the charge hose connector at the nitrogen cylinder.
 - When the system pressure is reduced to normal, disconnect the hose from the cylinder.

Triple Evacuation Procedure

A Micron or Torr gauge must be used for this procedure.

1. Discharge the oxygen-free nitrogen and evacuate the system to a reading of 8000 Microns (8 Torr) using all service valves.
2. Break the vacuum by allowing nitrogen into the port connections (liquid and gas line pipes) until a positive pressure is achieved.
3. Evacuate the system to a reading of 5000 Microns (5 Torr).
4. Break the vacuum by allowing nitrogen into the port connections (liquid and gas line pipes) until a positive pressure is achieved.
5. Evacuate the system to a minimum reading of 500 Microns (0.5 Torr).
6. For a moisture-free system, ensure the vacuum is held without movement for a minimum of 4 hours.
7. If vacuum fails to hold, carry out steps 2 through 6 until vacuum holds.

Wiring Connections

WARNING

Electric Shock Hazard. Can cause injury or death. Unit must be grounded in accordance with national and local codes.

Line voltage is present at all components when unit is not in operation. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power sources.

CAUTION

All terminal connections must be made as illustrated in the following diagrams. Improperly connected wiring could damage unit or cause communication errors between indoor and outdoor units.

In the U.S.A., wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).

Outdoor Unit

- Refer to unit nameplate for minimum circuit ampacity and maximum over-current protection size.
- Make all electrical power wiring connections at the outdoor unit.
- Be sure to reattach all electrical box covers after connections are complete.

Indoor Unit

- Indoor unit is powered by the outdoor unit.

- Communication Wiring - Use one stranded 3-conductor wire to provide power and one stranded 2-conductor wire to provide communication.
- See “Table 7. Single Zone Installation Wiring Requirements” for wiring requirements.

NOTE: When installing a condensate pump the line voltage will have to be broken by using the condensate wiring or through the use of an external relay or contactor.

Figure 27. Single Zone Wiring

IMPORTANT

This unit must be properly grounded and protected by a circuit breaker. The ground wire for the unit must not be connected to a gas or water pipe, a lightning conductor or a telephone ground wire.

Do not connect power wires to the outdoor unit until all other wiring and piping connections have been completed.

Do not install the unit near a lighting appliance that includes a ballast. The ballast may affect remote control operation.

IMPORTANT

All illustrations listed are typical wiring diagrams. Refer to the wiring diagram on the unit for actual wiring.

Table 7. Single Zone Installation Wiring Requirements

<table>
<thead>
<tr>
<th>System and Terminal Designations</th>
<th>System Capacity</th>
<th>System Voltage</th>
<th>Number of Conductors</th>
<th>Wire Type</th>
<th>Wire Gauge / MCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor to Outdoor Wiring (L1, L2 and L3)</td>
<td>36K</td>
<td>208/230VAC</td>
<td>3</td>
<td>Stranded and unshielded</td>
<td>16AWG</td>
</tr>
<tr>
<td>Outdoor to Main Power (L1, L2 and GND)</td>
<td>36K</td>
<td>208/230VAC</td>
<td>3</td>
<td>Stranded and unshielded</td>
<td>10AWG / 30A</td>
</tr>
</tbody>
</table>
Figure 28. 3PB036 Outdoor Unit Wiring Diagram

- **COMP**: COMPRESSOR
- **EEV**: ELECTRIC EXPANSION VALVE
- **FM1**: OUTDOOR DC FAN
- **H-PRO**: HIGH PRESSURE SWITCH
- **L**: PFC INDUCTOR
- **L-PRO**: LOW PRESSURE SWITCH
- **SV**: 4-WAY VALVE
- **TS**: DISCHARGE TEMPERATURE SENSOR
- **T3**: CONDENSER TEMPERATURE SENSOR
- **T4**: OUTDOOR AMBIENT TEMPERATURE SENSOR

Component in Dashed Line is Optional or Field Wiring

Figure 29. 3WMB036 Indoor Unit Wiring Diagram

- **S5**: FOR REMOTE ON/OFF
- **Wiring Diagram (Indoor Unit)**
- **FOR REMOTE ON/OFF**
- **FOR SETTING NETADDRESS**

Note: The programmable wired controller and LVM use the same port CN403.
Unit Start-Up

IMPORTANT
Units should be energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

1. Inspect all factory- and field-installed wiring for loose connections.
2. Verify that the manifold gauge set is connected.
3. Add additional refrigerant charge if required before opening valves and while system is still under a vacuum.
4. Open the liquid and suction line service valves to release the refrigerant charge contained in outdoor unit into the system.
5. Replace the stem caps and tighten to the value listed in “Table 1. Torque Requirements” on page 8.
6. Check voltage supply at the outdoor unit terminal strip. The voltage must be within the range listed on the unit’s nameplate. If not, do not start the equipment until you have consulted with the power company and the voltage condition has been corrected.
7. Refer to the included user guide to operate the system using the provided remote control.
8. Visually check for binding of both indoor and outdoor fans.

Adding Refrigerant for Longer Line Set
The outdoor unit is factory-charged with refrigerant. Calculate the additional refrigerant required according to the diameter and the length of the liquid pipe between the outdoor unit and indoor unit connections. Be sure to add the proper amount of additional refrigerant. Failure to do so may result in reduced performance. Maximum line set length is 213 feet (65 meters).

Table 8. Additional Refrigerant Charge

<table>
<thead>
<tr>
<th>System Size (KBtu)</th>
<th>Pipe Length (feet / meters)</th>
<th>Amount of Refrigerant to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>>25 (7.5)</td>
<td>0.322 oz/ft (30g/m)</td>
</tr>
</tbody>
</table>

Troubleshooting

Table 9. Troubleshooting Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>Indoor unit EEPROM error</td>
</tr>
<tr>
<td>E1</td>
<td>Communication error between indoor unit and outdoor unit</td>
</tr>
<tr>
<td>E3</td>
<td>Indoor fan speed error</td>
</tr>
<tr>
<td>E4</td>
<td>Indoor return air temperature sensor error</td>
</tr>
<tr>
<td>E5</td>
<td>Indoor coil temperature sensor error</td>
</tr>
<tr>
<td>EC</td>
<td>Low refrigerant</td>
</tr>
<tr>
<td>EE</td>
<td>High water level alarm</td>
</tr>
<tr>
<td>F0</td>
<td>Outdoor current overload sensed</td>
</tr>
<tr>
<td>F1</td>
<td>Outdoor ambient temperature sensor error</td>
</tr>
<tr>
<td>F2</td>
<td>Outdoor coil temperature sensor error</td>
</tr>
<tr>
<td>F3</td>
<td>Compressor discharge temperature sensor error</td>
</tr>
<tr>
<td>F4</td>
<td>Outdoor unit EEPROM error</td>
</tr>
<tr>
<td>F5</td>
<td>Outdoor unit fan speed error</td>
</tr>
<tr>
<td>P0</td>
<td>Inverter module IPM error</td>
</tr>
<tr>
<td>P1</td>
<td>High or low voltage protection</td>
</tr>
<tr>
<td>P3</td>
<td>Outdoor unit low temperature lockout</td>
</tr>
<tr>
<td>P4</td>
<td>Compressor drive error</td>
</tr>
<tr>
<td>--</td>
<td>Mode conflict</td>
</tr>
<tr>
<td>P6</td>
<td>Compressor high-pressure or low-pressure switch open</td>
</tr>
</tbody>
</table>

Test Run

Pre-Checks
Only perform test run after you have completed the following steps:
- Electrical Safety Checks – Confirm that the unit’s electrical system is safe and operating properly.
- Refrigerant Leak Checks – Check all flare nut connections and confirm that the system is not leaking.
- Confirm that suction and liquid valves are fully open.

Procedure
You should perform the Test Run for at least 30 minutes.
1. Connect power to the unit.
2. Press the ON/OFF button on the remote controller to turn it on.
3. Press the mode button to scroll through the following functions, one at a time:
 - COOL - Select lowest possible temperature.
 - HEAT - Select highest possible temperature.
4. Let each function run for 5 minutes, and perform the following checks:
Table 8. Test Run Checklist

<table>
<thead>
<tr>
<th>Checks</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>No electrical leakage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit is properly grounded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All electrical terminals properly covered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor and outdoor units are solidly installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All pipe connection points do not leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water drains properly from drain hose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All piping is properly insulated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit performs COOL function properly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit performs HEAT function properly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor unit louvers rotate properly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor unit responds to remote controller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double-Check Pipe Connections

During operation, the pressure of the refrigerant circuit will increase. This may reveal leaks that were not present during your initial leak check. Take time during the Test Run to double-check that all refrigerant pipe connection points do not have leaks.

1. Using remote control, return unit to the normal operating temperature.
2. Using insulation tape, wrap the indoor refrigerant pipe connections that you left uncovered during the indoor unit installation process.

If Ambient Temperature is below 63°F (17°C)

You cannot use the remote controller to turn on the COOL function when the ambient temperature is below 63°F (17°C). In this instance, you can use the MANUAL CONTROL button to test the COOL function.

1. Lift the front panel of the indoor unit, and raise it until it clicks in place.
2. The MANUAL CONTROL button is located on the right-hand side of the unit. Press it 2 times to select the COOL function.
3. Perform Test Run as normal.

Dry Mode Operation (Dehumidification)

Procedure

1. Using the provided wireless remote control, press the MODE button and select DRY mode.
2. Press the UP/ DOWN button to select the desired temperature. The temperature setting range is from 62°F (17°C) to 86°F (30°C) in one degree increments.

 NOTE: The blower is preset at a low speed and cannot be changed therefore it will get cold and most likely will surpass the temperature setting by 6-10°F (3-5°C) depending on the room size or other various factors. Also the Follow Me mode does not operate in this mode.

 NOTE: In addition, the indoor units do not have a humidistat installed therefore they are unable to determine humidity levels. This product is not recommend as a main source for dehumidification.

Sequence of Operation

When in dry mode operation the unit is actually in cooling mode with a low speed blower operation. Set remote temp to a lower room temp to begin the dry mode operation. The compressor will stop when the room temperature is 4°F (2°C) lower than the temperature setting.

However there is a temperature compensation for cooling mode that is two degrees Celsius. So the unit will stop when the temperature is 8°F (4°C) lower than the room temperature settings.