LENNOXService Literature

INSTALLATION AND SERVICE PROCEDURE

14ACX

Corp. 0638-L10 Revised August, 2018

LOUVERED

NON-LOUVERED

This literature is intended as a general guide and does not supersede local codes in any way. Consult authorities who have jurisdiction before installation.

WARNING

Improper installation, adjustment, alteration, service or maintenance can cause personal injury, loss of life, or damage to property.

Installation and service must be performed by a licensed professional installer (or equivalent) or a service agency.

A IMPORTANT

This unit must be matched with an indoor coil as specified in Lennox Engineering Handbook. Coils previously charged with HCFC-22 must be flushed.

▲ WARNING

Electric Shock Hazard. Can cause injury or death. Unit must be grounded in accordance with national and local codes.

Line voltage is present at all components when unit is not in operation on units with single-pole contactors. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power supplies.

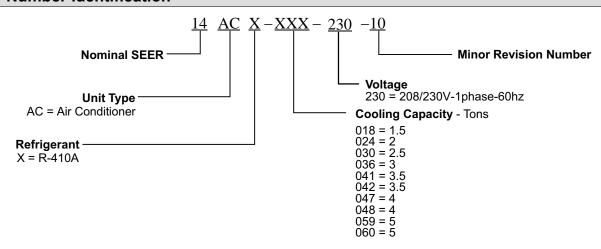
A IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for noncompliance.

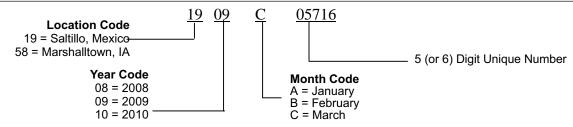
TABLE OF CONTENTS

Model Number Identification 2
Typical Serial Number Identification
Specifications
Electrical Data
Unit Dimensions
Typical Unit Parts Arrangement 8
Component Specifications 9
Refrigerant Metering Devices - Indoor Coil 10
Operating Manifold Gauge Set and Service Valves 10
Unit Placement
Removing and Installing Louvered Panels 13
New or Replacement Line Set
Brazing Connections
Flushing Line Set and Indoor Coil
Installing Indoor Metering Device
Leak Test Line Set and Indoor Coil
Evacuating Line Set and Indoor Coil
Electrical Connections 24
System Operation
Maintenance
Start-Up and Performance Checklist
Sequence of Operations
Servicing Unit Void of Charge
Unit Start-Up
System Refrigerant 33

14ACX Air Conditioners, which will be referred to in this instruction as the outdoor unit, uses HFC-410A refrigerant. This outdoor unit must be installed with a matching indoor unit and line set as outlined in the *Lennox 14ACX Engineering Handbook*.


This outdoor unit is designed for use in systems that use one of the following refrigerant metering devices:

- Thermal expansion valve (TXV)
- Fixed orifice


A CAUTION

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

Model Number Identification

Typical Serial Number Identification

Specifications

	ι	Jnit	Outdoor Fan		
Model Numbers	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades Diameter - inche		
14ACX-018-230-01	76	6 lbs. 12 oz.	3	18	
14ACX-018-230-02, -10, -11, -12, -13	76	5 lbs. 11 oz.	3	18	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	ı	Jnit	Outdoor Fan		
Model Numbers	Sound Rating Number (dB)	Sound Rating Number Factory Refrigerant Charge ²		Diameter - inches.	
14ACX-024-230-01	76	7 lbs. 10 oz.	3	22	
14ACX-024-230-02, -10, -11, -12	76	6 lbs. 8 oz.	3	22	
14ACX-024-230-16	76	5 lbs. 12 oz.	3	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

 $^{^{2}\,\}mbox{Refrigerant}$ charge sufficient for 15 feet length of refrigerant lines.

	L	Jnit	Outdoor Fan		
Model Numbers	Sound Rating Number Factory Refrigerant Charge ²		Number of Blades	Diameter - inches.	
14ACX-030-230-01	76	8 lbs. 0 oz.	3	22	
14ACX-030-230-02, -10, -11, -12, -13, -15, -16, -17	76	6 lbs. 11 oz.	3	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	ι	Init	Outdoor Fan		
Model Numbers	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-036-230-01	76	8 lbs. 9 oz.	3	22	
14ACX-036-230-02, -10, -13, -14, -15, -16	76	6 lbs. 11 oz.	3	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	L	Init	Outdoor Fan		
Model Numbers	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-041-230-01, -02, -03	78	10 lbs. 1 oz.	4	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

 $^{^{2}\,\}mbox{Refrigerant}$ charge sufficient for 15 feet length of refrigerant lines.

Model Numbers	L	Init	Outdoor Fan		
	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-042-230-01, -02, -10, -11, -12, -13, -14	78	8 lbs. 10 oz.	4	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	L	Init	Outdoor Fan		
Model Numbers	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-047-230-01, -02, -03	80	11 lbs. 3 oz.	4	26	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	l	Jnit	Outdoor Fan		
Model Numbers	Sound Rating Number Factory Refrigerant (dB) ¹ Charge ²		Number of Blades Diameter - inc		
14ACX-048-230-01, -02, -10, -11, -12, -13, -14, -15	78	10 lbs. 0 oz.	4	22	
14ACX-048-230-16, -17	78	10 lbs. 14 oz	4	22	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

	L	Init	Outdoor Fan		
Model Numbers	Sound Rating Number (dB)	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-059-230-01, -02, -03, -04	80	11 lbs. 2 oz.	4	26	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

Model Numbers	ι	Init	Outdoor Fan		
	Sound Rating Number (dB)	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
14ACX-060-230-01, -02, -10, -11, 12, 13, -14, -15	80	12 lbs. 0 oz.	4	26	

¹ Tested according to AHRI Standard 270-2008 test conditions.

² Refrigerant charge sufficient for 15 feet length of refrigerant lines.

Electrical Data

208/230V-60 Hz-1 Ph									
	Unit		nit	Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-018-230-01	1.0	20	12.3	9.0	48.0	1/5	1075	1.1	2.0
14ACX-024-230-02	1.0	20	12.3	9.0	58.3	1/5	1075	1.1	2.0
14ACX-024-230-02	2.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.4
14ACX-018-230-10	1.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.4
14ACX-018-230-11	1.0 & 2.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.4
	1.0 & 2.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.3
14ACX-018-230-12	3.0	20	12.4	9.0	48.0	1/10	1075	0.7	1.3
	4.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.3
14ACX-018-230-13	1.0	20	12.4	9.0	48.0	1/10	1075	0.7	1.3
14ACA-010-230-13	2.0	20	12.0	9.0	48.0	1/10	1075	0.7	1.3

¹ HACR type circuit breaker or fuse.

 $^{^2}$ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

			208	/230V-60 Hz	-1 Ph				
		U	nit	Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-024-230-01	1.0	30	17.9	13.4	58.3	1/5	1075	1.1	2.0
14ACX-024-230-02	1.0	30	17.9	13.4	58.3	1/5	1075	1.1	2.0
14ACX-024-230-10	1.0 & 2.0	30	17.9	13.4	58.3	1/6	1075	1.1	1.9
14ACX-024-230-11	1.0 & 2.0	30	17.9	13.4	58.3	1/6	1075	1.1	1.9
14ACX-024-230-12	1.0 & 2.0	30	17.9	13.4	58.3	1/6	1075	1.1	1.9
	1.0	30	17.9	13.4	58.0	1/6	1075	1.1	1.9
14ACX-024-230-16	2.0	30	17.9	13.46	58.0	1/6	1075	1.1	1.9
	3.0	30	17.8	13.46	58.0	1/6	825	1.0	1.9
14ACX-024-230-17	1.0	30	18.7	13.4	58.0	1/6	825	1.9	1.9
	2.0	30	17.8	13.4	58.0	1/6	825	1.0	1.9

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

			208	3/230V-60 Hz	-1 Ph					
		U	nit	Comp	Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)	
14ACX-030-230-01	1.0	30	17.2	12.9	64.0	1/6	825	1.1	2.1	
14ACX-030-230-02	1.0	30	17.2	12.9	64.0	1/6	825	1.1	2.1	
14ACX-030-230-10	1.0 & 2.0	30	17.2	12.9	64.0	1/6	825	1.1	2.1	
14ACX-030-230-11	1.0 & 2.0	30	17.2	12.9	64.0	1/6	825	1.1	2.1	
14ACX-030-230-12	1.0 & 2.0	30	17.2	12.9	64.0	1/6	825	1.1	2.1	
14ACX-030-230-12	3.0	25	17.1	12.9	64.0	1/6	825	1.0	2.1	
14ACX-030-230-13	1.0	25	17.1	12.9	64.0	1/6	825	1.0	1.9	
14ACX-030-230-15	1.0	25	17.1	12.9	64.0	1/6	825	1.0	1.9	
14ACX-030-230-16	1.0	25	17.1	12.9	64.0	1/6	825	1.0	1.9	
14ACX-030-230-17	1.0	25	17.1	12.9	64.0	1/6	825	1.0	1.9	

¹ HACR type circuit breaker or fuse.

 $^{^2}$ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

		Uı	nit	Comp	ressor		Conden	ser Fan	
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-036-230-01	1.0	30	18.7	14.1	77.0	1/6	825	1.1	2.1
14ACX-036-230-02	1.0	30	18.7	14.1	77.0	1/6	825	1.1	2.1
14ACX-036-230-10	1.0	30	18.7	14.1	77.0	1/6	825	1.1	1.9
14ACX-036-230-11	1.0	30	18.7	14.1	77.0	1/6	825	1.1	1.9
14ACX-030-230-11	1.0	30	18.6	14.1	77.0	1/6	825	1.0	1.9
14ACX-036-230-13	1.0 & 2.0	30	18.7	14.1	77.0	1/6	825	1.1	1.9
14ACX-036-230-14	1.0 & 2.0	30	18.7	14.1	77.0	1/6	825	1.1	1.9
14ACA-030-230-14	3.0	30	18.6	14.1	77.0	1/6	825	1.0	1.9
14ACX-036-230-15	1.0 & 2.0	30	18.7	14.1	77.0	1/6	825	1.1	1.9
14ACA-030-230-13	3.0 & 4.0	30	18.6	14.1	77.0	1/6	825	1.0	1.9
14ACX-036-230-16	1.0	30	18.6	14.1	77.0	1/6	825	1.0	1.9

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

			208	3/230V-60 Hz	-1 Ph				
		Unit		Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-041-230-01	1.0 & 2.0	35	22.8	16.7	79.0	1/4	825	1.7	3.2
14ACX-041-230-02	1.0 & 2.0	35	22.8	16.7	79.0	1/4	825	1.7	3.2
14ACX-041-230-03	1.0	35	22.8	16.7	79.0	1/4	825	1.7	3.2
	2.0	35	22.6	16.7	79.0	1/4	825	1.7	3.2

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

			208	3/230V-60 Hz	-1 Ph				
		Unit		Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-042-230-01	1.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2
14ACX-042-230-10	1.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2
14ACX-042-230-11	1.0 & 2.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2
14ACX-042-230-12	1.0 & 2.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2
14ACX-042-230-13	1.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2
14ACX-042-230-14	1.0	40	24.1	17.9	112.0	1/4	825	1.7	3.2

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

208/230V-60 Hz-1 Ph									
		Unit		Compressor		Condenser Fan			
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
14ACX-047-230-01	1.0	45	26.7	19.9	109.0	1/3	825	1.8	2.9
14ACX-047-230-02	1.0 & 2.0	45	26.7	19.9	109.0	1/3	825	1.8	2.9
14ACX-047-230-03	1.0	45	26.7	19.9	109.0	1/3	825	1.8	2.9

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

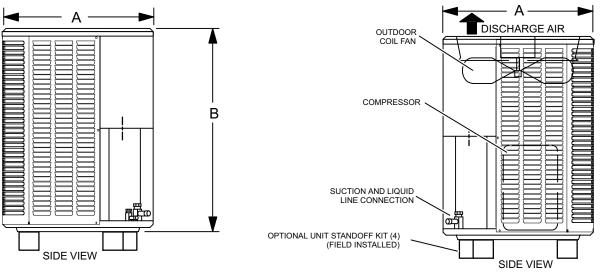
	208/230V-60 Hz-1 Ph										
		Unit		Compressor		Condenser Fan					
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)		
14ACX-048-230-01	1.0	50	29.0	21.8	117.0	1/4	825	1.7	3.1		
14ACX-048-230-10	1.0	50	29.0	21.8	117.0	1/4	825	1.7	3.1		
14ACX-048-230-11	1.0 & 2.0	50	29.0	21.8	117.0	1/4	825	1.7	3.1		
14ACX-048-230-12	1.0 & 2.0	50	29.0	21.8	117.0	1/4	825	1.7	3.1		
14ACX-048-230-13	1.0	50	29.0	21.8	117.0	1/4	825	1.7	3.1		
14ACX-048-230-16	1.0	45	26.6	19.9	109.0	1/4	825	1.7	3.2		
14ACX-048-230-17	1.0	45	26.6	19.8	96.0	1/4	825	1.7	3.2		

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

208/230V-60 Hz-1 Ph										
		Unit		Compressor		Condenser Fan				
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)	
14ACX-059-230-01	1.0, 2.0, 3.0, 4.0 & 5.0	50	33.1	25.0	134.0	1/3	825	1.8	2.9	
14ACX-059-230-02	1.0 & 2.0	50	33.1	25.0	134.0	1/3	825	1.8	2.9	
14ACX-059-230-03	1.0	50	33.1	25.0	134.0	1/3	825	1.8	2.9	
14ACX-059-230-04	1.0 & 2.0	50	34.1	25.0	134.0	1/3	820	2.8		

¹ HACR type circuit breaker or fuse.


² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

208/230V-60 Hz-1 Ph										
		Unit		Compressor		Condenser Fan				
Model Numbers	Label Rev.	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)	
14ACX-060-230-01	1.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-10	1.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-11	1.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-12	1.0 & 2.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-13	1.0 & 2.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-14	1.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	
14ACX-060-230-15	1.0	60	34.8	26.4	134.0	1/3	825	1.8	2.9	

¹ HACR type circuit breaker or fuse.

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

Unit Dimensions - Inches (mm)

Model Numbers	A	В
14ACX-018-230-XX (All)	24-1/4 (616)	29-1/4 (743)
14ACX-024-230-01	24-1/4 (616)	29-1/4 (743)
14ACX-024-230-02 through -12	28-1/4 (724)	33-1/4 (845)
14ACX-024-230-13	28-1/4 (724)	29-1/4 (743)
14ACX-030-230-01	28-1/4 (724)	29-1/4 (743)
14ACX-030-230-02 and later	28-1/4 (724)	37-1/4 (946)
14ACX-036-230-01	28-1/4 (724)	29-1/4 (743)
14ACX-036-230-02 and later	28-1/4 (724)	37-1/4 (946)
14ACX-041-230-01	28-1/4 (724)	37-1/4 (946)
14ACX-042-230-XX (All)	28-1/4 (724)	29-1/4 (743)
14ACX-047-230-01	32-1/4 (819)	33-1/4 (845)
14ACX-048-230-1 through -14	28-1/4 (724)	37-1/4 (946)
14ACX-048-230-15	28-1/4 (724)	33-1/4 (845)
14ACX-059-230-XX (AII)	32-1/4 (819)	37-1/4 (946)
14ACX-060-230-XX (All)	32-1/4 (819)	33-1/4 (845)

Typical Unit Parts Arrangement NOTE — Plumbing layout and compressor type may vary between model sizes. CONTROL CAPACITOR COMPRESSOR (B1) (C12) **GROUND LUG** DISCHARGE LINE COMPRESSOR **HARNESS** CONNECTION CONTACTOR (K1) CRANKCASE HEATER THERMOSTAT (S40) WIRE ISOLATION OUTDOOR COIL FOAM. (DO NOT REMOVE.) CUTOUT FOR HIGH **VOLTAGE CONDUIT** CRANKCASE HEATER (HR1) SEE NOTE CONTROL WIRE CRANKCASE HEATER THERMOSTAT (S40) LIQUID LINE SERVICE VALVE

Figure 1. Typical Unit Parts Arrangement (Units with Copeland Compressor)

SUCTION LINE SERVICE VALVE

HIGH PRESSURE SWITCH (S4)

NOTE —14ACX-041-230-01, 14ACX-047-230-01, 14ACX-059-230-01, all models of the

and crankcase heater (HR1).

14ACX-048-230-XX and 14ACX-060-230-XX are equipped with crankcase thermostat (S40)

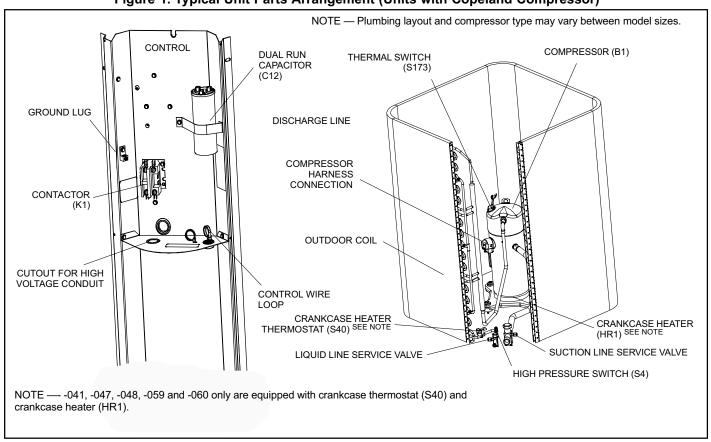


Figure 2. Typical Unit Parts Arrangement (Units with Interlink Compressor)

Component Specifications

Table 1. Field Replaceable Components

Model Numbers	Contactor (K1)	Run Capacitor (C12)	Liquid Line Drier	Crankcase Heater (HR1)
14ACX-018-230-XX (All)	1-Pole, 25A	30 <u>+</u> 5 MFD @ 440V Round		
14ACX-024-230-XX (All)		35 <u>+</u> 5 MFD @ 440V Round		NI/A
14ACX-030-230-XX (All)	1-Pole, 25A	40 <u>+</u> 5 MFD @ 440V Round		N/A
14ACX-036-230-XX (All)		45 <u>+</u> 5 MFD @ 440V Round		
14ACX-041-230-01				40W 240V 04.72-7.01
14ACX-042-230-XX (All)		45 <u>+</u> 10 MFD @ 440V Round		N/A
14ACX-047-230-01	1-Pole, 35A			70W 240V 06.35-8.64
14ACX-048-230-01 through -10		70 <u>+</u> 10 MFD @ 440V Oval	R410A - One Way - 55G	70W 240V 06.35-8.64
14ACX-048-230-11, -12, -13, -14, -15, -16	1-Pole, 35A	70 ± 10 MFD @ 440V Round		70W 240V 06.35-8.64
14ACX-059-230-XX (All)		70 ± 10 MFD @ 440V Round		70W 240V 06.35-8.64
14ACX-060-230-01 through -10	1-Pole, 35A	70 <u>+</u> 10 MFD @ 440V Oval		70W 240V 06.35-8.64
14ACX-060-230-11, -12	1-Pole, 35A	70 ± 10 MFD @ 440V Round		70W 240V 06.35-8.64
14ACX-060-230-13, -14	1-Pole, 35A	75 <u>+</u> 10 MFD @ 440V Round		70W 240V 06.35-8.64

Table 2. Service Valves Sizes and Refrigerant Line Set Recommendations

MadalNamban	Valve Field Size C	onnections	Recommended Li	ne Set			
Model Number	Liquid Line	Suction Line	Liquid Line	Suction Line	L15 Series Line Sets		
14ACX-018-230-XX (All)							
14ACX-024-230-XX (All)	3/8 in. (10 mm)	3/4 in. (19 mm)	3/8 in. (10 mm)	3/4 in. (19 mm)	L15-41 — 15 feet to 50 feet (4.6 meters to 15 meters)		
14ACX-030-230-XX (All)					,		
14ACX-036-230-XX (All)							
14ACX-041-230-01		7/8 in. (22 mm)	3/8 in. (10 mm)	7/8 in. (22 mm)			
14ACX-042-230-XX (All)	3/8 in. (10 mm)				L15-65 — 15 feet to 50 feet (4.6 meters to 15 meters)		
14ACX-047-230-01					,		
14ACX-048-230-XX (All)							
14ACX-059-230-XX (All)	2/9 in (10 mm)	1 1/9 in (20 mm)	2/9 in (10 mm)	1 1/9 in (20 mm)	Field Febricated		
14ACX-060-230-XX (All)	3/8 in. (10 mm)	1-1/8 in. (29 mm)	3/8 in. (10 mm)	1-1/8 in. (29 mm)	Field Fabricated		
NOTE — Some applications may required a field provided 7/8" to 1-1/8" adapter							

Refrigerant Metering Device - Indoor Coil

FIXED ORIFICE (RFC) METERING

The following table lists the indoor coil orifice sizes required for the specific outdoor unit listed. Refer to any of the publications listed in this section to obtain the required catalog number for a specific orifice size.

Table 3. Fixed Orifice Sizes

Model Numbers	Orifice Size
14ACX-018-230-XX (All)	.053
14ACX-024-230-XX (All)	.057
14ACX-030-230-01	.063
14ACX-030-230-02, -10 and -11	.065
14ACX-036-230-01	.073
14ACX-036-230-02, -10 and -11	.071
14ACX-041-230-01	.074
14ACX-042-230-XX (All)	.076
14ACX-047-230-XX (All)	.080
14ACX-048-230-XX (All)	.083
14ACX-059-230-XX (All)	.093
14ACX-060-230-XX (All)	.093

EXPANSION VALVE (TXV) METERING

This unit is also compatible with systems that uses an expansion valve. Refer to any of the publications listed below to obtain the required catalog number for a specific expansion valve.

- Lennox 14ACX Product Specification (EHB)
- Lennox Product Catalog

Operating Manifold Gauge Set and Service Valves

These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities who have jurisdiction before installation.

TORQUE REQUIREMENTS

When servicing or repairing heating, ventilating, and air conditioning components, ensure the fasteners are appropriately tightened. Table 4 lists torque values for fasteners.

▲ IMPORTANT

To prevent stripping of the various caps used, the appropriately sized wrench should be used and fitted snugly over the cap before tightening.

When servicing or repairing HVAC components, ensure the fasteners are appropriately tightened. Table 4 provides torque values for fasteners.

▲ IMPORTANT

Only use Allen wrenches of sufficient hardness (50Rc - Rockwell Harness Scale minimum). Fully insert the wrench into the valve stem recess.

Service valve stems are factory-torqued (from 9 ft-lbs for small valves, to 25 ft-lbs for large valves) to prevent refrigerant loss during shipping and handling. Using an Allen wrench rated at less than 50Rc risks rounding or breaking off the wrench, or stripping the valve stem recess.

See the Lennox Service and Application Notes #C-08-1 for further details and information.

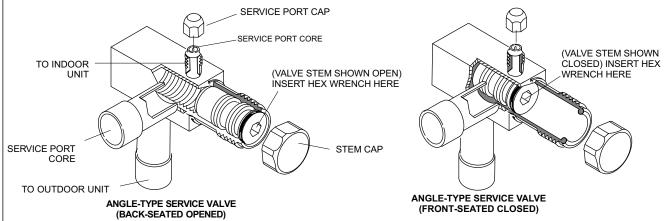
Table 4. Torque Requirements

Parts	Recommended Torque		
Service valve cap	8 ft lb.	11 NM	
Sheet metal screws	16 in lb.	2 NM	
Machine screws #10	28 in lb.	3 NM	
Compressor bolts	90 in lb.	10 NM	
Gauge port seal cap	8 ft lb.	11 NM	

USING MANIFOLD GAUGE SET

When checking the system charge, only use a manifold gauge set that features low loss anti-blow back fittings. Manifold gauge set used with HFC-410A refrigerant systems must be capable of handling the higher system operating pressures.

The gauges should be rated for use with pressures of 0 - 800 psig on the high side and a low side of 30" vacuum to 250 psig with dampened speed to 500 psi. Gauge hoses must be rated for use at up to 800 psig of pressure with a 4000 psig burst rating.

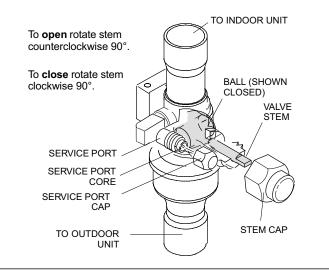

OPERATING SERVICE VALVES

The liquid and vapor line service valves are used for removing refrigerant, flushing, leak testing, evacuating, checking charge and charging. Each valve is equipped with a service port which has a factory-installed valve stem. Figure 3 provides information on how to access and operating both angle and ball service valves.

SERVICE VALVES ANGLE AND BALL

Operating Angle Type Service Valve:

- 1. Remove stem cap with an appropriately sized wrench.
- 2. Use a service wrench with a hex-head extension (3/16" for liquid line valve sizes and 5/16" for vapor line valve sizes) to back the stem out counterclockwise as far as it will go.



When service valve is **OPEN**, the service port is open to line set, indoor and outdoor unit.

When service valve is **CLOSED**, the service port is open to the line set and indoor unit

Operating Ball Type Service Valve:

- 1. Remove stem cap with an appropriately sized wrench.
- Use an appropriately sized wrenched to open. To open valve, rotate stem counterclockwise 90°. To close rotate stem clockwise 90°.

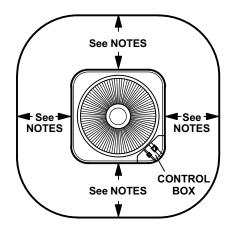
To Access Service Port:

A service port cap protects the service port core from contamination and serves as the primary leak seal.

- 1. Remove service port cap with an appropriately sized wrench.
- 2. Connect gauge set to service port.
- When testing is completed, replace service port cap and tighten as follows:
 - With torque wrench: Finger tighten and torque cap per table 4.
 - Without torque wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/6 turn clockwise.

1/6 TURN 10 2 9 3 8 7 6 5⁴

Reinstall Stem Cap:


Stem cap protects the valve stem from damage and serves as the primary seal. Replace the stem cap and tighten as follows:

- With Torque Wrench: Finger tighten and then torque cap per table 4.
- Without Torque Wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/12 turn clockwise.

NOTE — A label with specific torque requirements may be affixed to the stem cap. If the label is present, use the specified torque.

Figure 3. Angle and Ball Service Valves

NOTES:

Service clearance of 30 in. (762 mm) must be maintained on one of the sides adjacent to the control box.

Clearance to one of the other three sides must be 36 in. (914 mm)

Clearance to one of the remaining two sides may be 12 in. (305 mm) and the final side may be 6 in. (152 mm).

A clearance of 24 in. must be maintained between two units.

48 in. (1219 mm) clearance required on top of unit.

NOTICE: Specific applications may require adjustment of the listed installation clearances to provide protection for the unit from physical damage or to avoid conditions which limit operating efficiency. (Example: Clearances may have to be increased to prevent snow or ice from falling on the top of the unit. Additional clearances may also be required to prevent air recirculation when the unit is installed under a deck or in another tight space.)

Figure 4. Installation Clearances

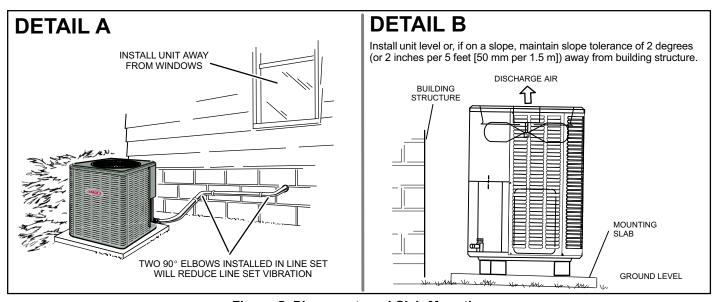


Figure 5. Placement, and Slab Mounting

Unit Placement

See *Unit Dimensions* on page 7 for sizing mounting slab, platforms or supports. Refer to figure 4 for mandatory installation clearance requirements.

In order to avoid injury, take proper precaution when lifting heavy objects.

POSITIONING CONSIDERATIONS

Consider the following when positioning the unit:

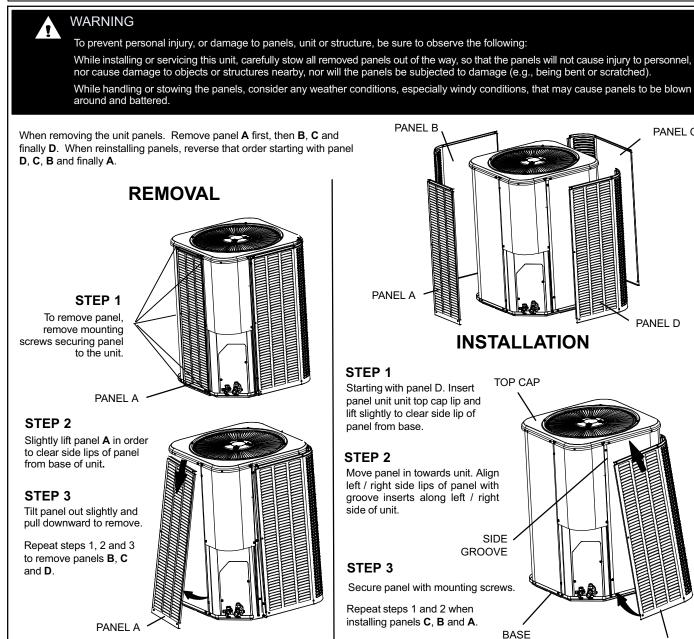
- Some localities are adopting sound ordinances based on the unit's sound level registered from the adjacent property, not from the installation property. Install the unit as far as possible from the property line.
- When possible, do not install the unit directly outside a window. Glass has a very high level of sound transmission. For proper placement of unit in relation to a window see the provided illustration in figure 5, detail A.

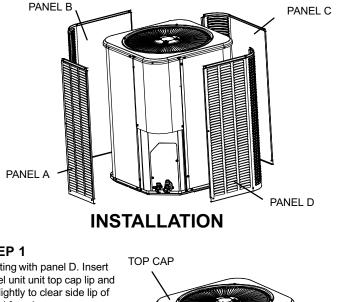
PLACING UNIT ON SLAB

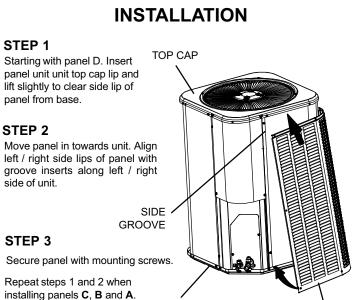
When installing unit at grade level, the top of the slab should be high enough above grade so that water from higher ground will not collect around the unit. The slab should have a slope tolerance as described in figure 5. detail B.

ROOF MOUNTING

Install the unit a minimum of 6 inches (152 mm) above the roof surface to avoid ice build-up around the unit. Locate the unit above a load bearing wall or area of the roof that can adequately support the unit. Consult local codes for rooftop applications.


If unit coil cannot be mounted away from prevailing winter winds, a wind barrier should be constructed. Size barrier at least the same height and width as outdoor unit. Mount barrier 24 inches (610 mm) from the sides of the unit in the direction of prevailing winds.


NOTICE


Roof Damage!

This system contains both refrigerant and oil. Some rubber roofing material may absorb oil and cause the rubber to swell when it comes into contact with oil. The rubber will then bubble and could cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface.

Removing and Installing Louvered Panels – Initial Builds

BASE

Figure 6. Louvered Panels

PANEL D

Removing and Installing Louvered Panels - Later Builds

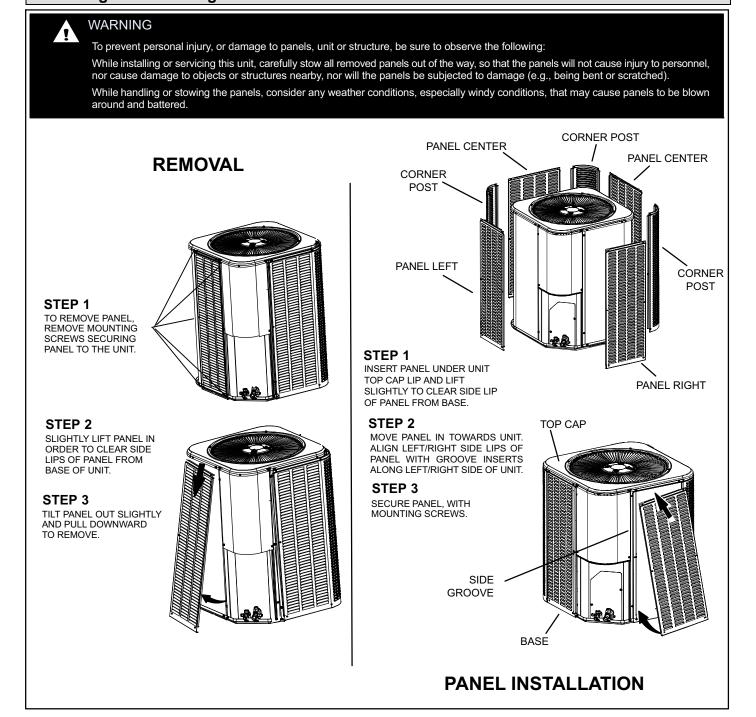


Figure 7. Louvered Panels

New or Replacement Line Set

This section provides information on new installation or replacement of existing line set. If a new or replacement line set is not required, then proceed to *Brazing Connections* on page 17.

Field refrigerant piping consists of liquid and suction lines from the outdoor unit (braze connections) to the indoor unit coil (flare or braze connections). Use Lennox L15 (braze, non-flare) series line set, or use field-fabricated refrigerant lines as listed in table 2.

NOTE - When installing refrigerant lines longer than 50 feet, see the Lennox Refrigerant Piping Design and Fabrication Guidelines, CORP. 9351-L9, or contact Lennox Technical Support Product Applications for assistance.

To obtain the correct information from Lennox, be sure to communicate the following points:

- Model (14ACX) and size of unit (e.g. -060).
- Line set diameters for the unit being installed as listed in table 2 and total length of installation.
- Number of elbows and if there is a rise or drop of the piping.

If refrigerant lines are routed through a wall, seal and isolate the opening so vibration is not transmitted to the building. Pay close attention to line set isolation during installation of any HVAC system. When properly isolated from building structures (walls, ceilings. floors), the refrigerant lines will not create unnecessary vibration and subsequent sounds.

A IMPORTANT

Mineral oils are not compatible with HFC-410A If oil must be added, it must be a Polyol ester oil.

The compressor is charged with sufficient Polyol ester oil for line set lengths up to 50 feet. Recommend adding oil to system based on the amount of refrigerant charge in the system. No need to add oil in system with 20 pounds of refrigerant or less. For systems over 20 pounds - add one ounce for every five pounds of refrigerant.

Recommended topping-off POE oils are Mobil EAL ARCTIC 22 CC or ICI EMKARATE™ RL32CF.

MATCHING WITH NEW OR EXISTING INDOOR COIL AND LINE SET

The RFC1-metering line consisted of a small bore copper line that ran from condenser to evaporator coil. Refrigerant was metered into the evaporator by utilizing temperature/pressure evaporation effects on refrigerant in the small RFC line. The length and bore of the RFC line corresponded to the size of cooling unit.

If the 14ACX is being used with either a new or existing indoor coil which is equipped with a liquid line which served as a metering device (RFCI), the liquid line must be replaced prior to the installation of the 14ACX unit. Typically a liquid line used to meter flow is 1/4" in diameter and copper.

LIQUID LINE FILTER DRIER INSTALLATION

The filter drier (one is shipped with each 14ACX unit) must be field installed in the liquid line between the outdoor unit's liquid line service valve and the indoor coil's metering device (fixed orifice or expansion valve) as illustrated in figure 8. This filter drier must be installed to ensure a clean, moisture-free system. Failure to install the filter drier will void the warranty. A replacement filter drier is available from Lennox. See *Brazing Connections* on page for special procedures on brazing filter drier connections to the liquid line.

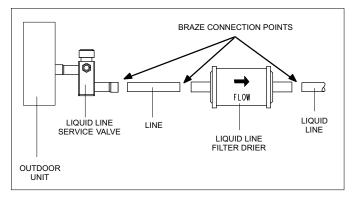
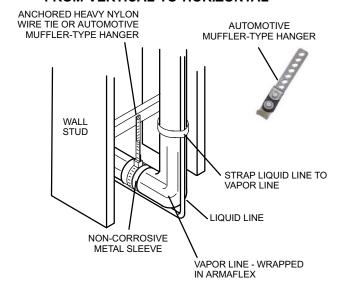
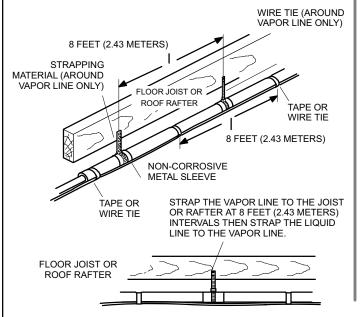


Figure 8. Typical Liquid Line Filter Drier Installation


IMPORTANT — Refrigerant lines must not contact structure.

LINE SET

INSTALLATION


Line Set Isolation — The following illustrations are examples of proper refrigerant line set isolation:

REFRIGERANT LINE SET — TRANSITION FROM VERTICAL TO HORIZONTAL

REFRIGERANT LINE SET — INSTALLING HORIZONTAL RUNS

To hang line set from joist or rafter, use either metal strapping material or anchored heavy nylon wire ties.

REFRIGERANT LINE SET — INSTALLING VERTICAL RUNS (NEW CONSTRUCTION SHOWN)

NOTE — Insulate liquid line when it is routed through areas where the surrounding ambient temperature could become higher than the temperature of the liquid line or when pressure drop is equal to or greater than 20 psig.

NOTE — Similar installation practices should be used if line set is to be installed on exterior of outside wall.

Figure 9. Line Set Installation

A IMPORTANT

Polyol ester (POE) oils used with HFC-410A refrigerant absorb moisture very quickly. It is very important that the refrigerant system be kept closed as much as possible. DO NOT remove line set caps or service valve stub caps until you are ready to make connections.

Brazing Connections

Use the procedures outline in figures 10 and 11 for brazing line set connections to service valves.

▲ WARNING

Danger of fire. Bleeding the refrigerant charge from only the high side may result in pressurization of the low side shell and suction tubing. Application of a brazing torch to a pressurized system may result in ignition of the refrigerant and oil mixture - Check the high and low pressures before applying heat.

▲ WARNING

When using a high pressure gas such as dry nitrogen to pressurize a refrigeration or air conditioning system, use a regulator that can control the pressure down to 1 or 2 psig (6.9 to 13.8 kPa).

▲ CAUTION

Brazing alloys and flux contain materials which are hazardous to your health.

Avoid breathing vapors or fumes from brazing operations. Perform operations only in well-ventilated areas.

Wear gloves and protective goggles or face shield to protect against burns.

Wash hands with soap and water after handling brazing alloys and flux.

A IMPORTANT

Connect gauge set low pressure side to vapor line service valve and repeat procedure starting at paragraph 4 for brazing the liquid line to service port valve.

▲ IMPORTANT

Allow braze joint to cool before removing the wet rag from the service valve. Temperatures above 250°F can damage valve seals.

A IMPORTANT

Use silver alloy brazing rods with 5% minimum silver alloy for copper-to-copper brazing. Use 45% minimum alloy for copper-to-brass and copper-to-steel brazing.

▲ WARNING

Fire, Explosion and Personal Safety Hazard.

Failure to follow this warning could result in damage, personal injury or death.

Never use oxygen to pressurize or purge refrigeration lines. Oxygen, when exposed to a spark or open flame, can cause fire and/or an explosion, that could result in property damage, personal injury or death.

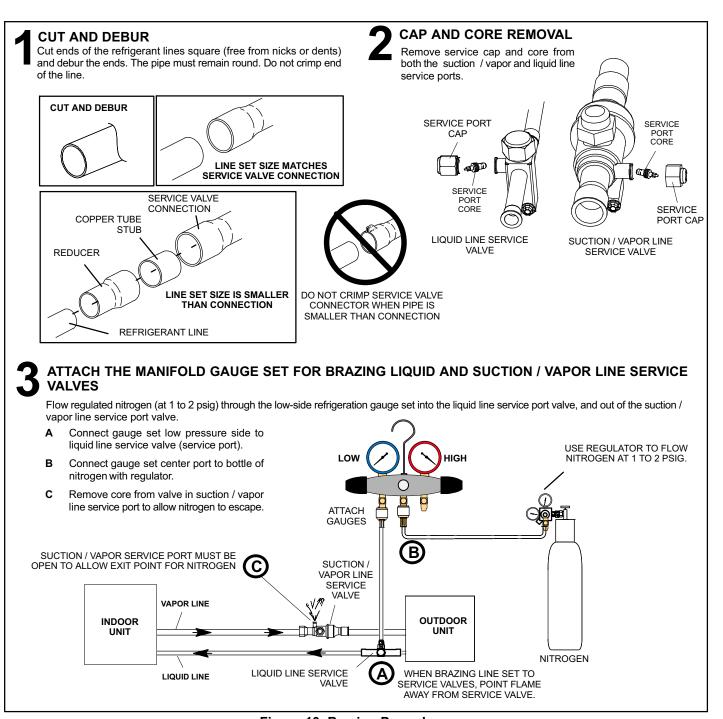
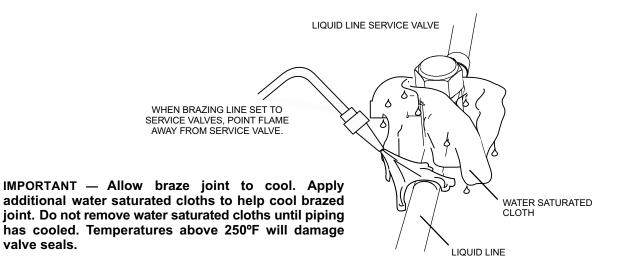


Figure 10. Brazing Procedures

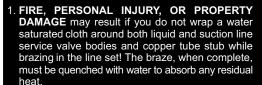
WRAP SERVICE VALVES

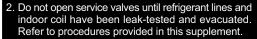

To help protect service valve seals during brazing, wrap water saturated cloths around service valve bodies and copper tube stubs. Use additional water saturated cloths underneath the valve body to protect the base paint.

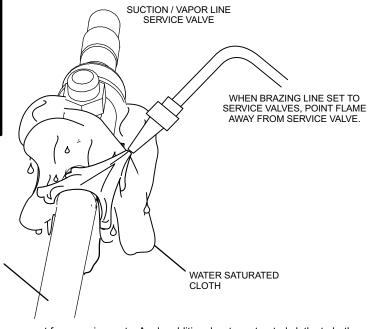
FLOW NITROGEN

Flow regulated nitrogen (at 1 to 2 psig) through the refrigeration gauge set into the valve stem port connection on the liquid service valve and out of the suction / vapor valve stem port. See steps 3A, 3B and 3C on manifold gauge set connections

BRAZE LINE SET


Wrap both service valves with water saturated cloths as illustrated here and as mentioned in step 4, before brazing to line set. Water saturated cloths must remain water saturated throughout the brazing and cool-down process.





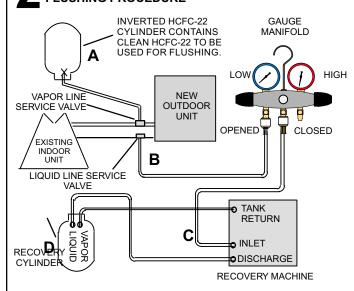
valve seals.

WARNING

PREPARATION FOR NEXT STEP

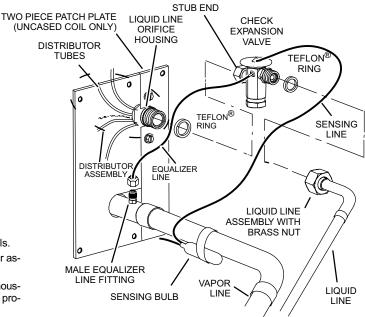
After all connections have been brazed, disconnect manifold gauge set from service ports. Apply additional water saturated cloths to both services valves to cool piping. Once piping is cool, remove all water saturated cloths. Refer to the unit installation instructions for the next step in preparing the unit.

SUCTION / VAPOR LINE


Figure 11. Brazing Procedures (continued)

TYPICAL EXISTING FIXED ORIFICE REMOVAL PROCEDURE (UNCASED OR COIL SHOWN)

DISTRIBUTOR TUBES LIQUID LINE ORIFICE HOUSING TEFLON® RING FIXED ORIFICE BRASS NUT DISTRIBUTOR ASSEMBLY REMOVE AND DISCARD WHITE TEFLON® SEAL (IF PRESENT) LIQUID LINE ASSEMBLY (INCLUDES STRAINER)


- A On fully cased coils, remove the coil access and plumbing panels.
- B Remove any shipping clamps holding the liquid line and distributor assembly.
- C Using two wrenches, disconnect liquid line from liquid line orifice housing. Take care not to twist or damage distributor tubes during this process.
- Remove and discard fixed orifice, valve stem assembly if present and Teflon[®] washer as illustrated above.
- E Use a field-provided fitting to temporary reconnect the liquid line to the indoor unit's liquid line orifice housing.

2 CONNECT GAUGES AND EQUIPMENT FOR FLUSHING PROCEDURE

- A Inverted HCFC-22 cylinder with clean refrigerant to the vapor service valve.
- **B** HCFC-22 gauge set (low side) to the liquid line valve.
- C HCFC-22 gauge set center port to inlet on the recovery machine with an empty recovery tank to the gauge set.
- **D** Connect recovery tank to recovery machines per machine instructions.

TYPICAL EXISTING EXPANSION VALVE REMOVAL PROCEDURE (UNCASED COIL SHOWN)

- A On fully cased coils, remove the coil access and plumbing panels.
- Remove any shipping clamps holding the liquid line and distributor assembly.
- C Disconnect the equalizer line from the check expansion valve equalizer line fitting on the vapor line.
- **D** Remove the vapor line sensing bulb.
- E Disconnect the liquid line from the check expansion valve at the liquid line assembly.
- **F** Disconnect the check expansion valve from the liquid line orifice housing. Take care not to twist or damage distributor tubes during this process.
- **G** Remove and discard check expansion valve and the two Teflon[®] rings.
- H Use a field-provided fitting to temporary reconnect the liquid line to the indoor unit's liquid line orifice housing.

THE SET IN THE SET IN

The line set and indoor unit coil must be flushed with at least the same amount of clean refrigerant that previously charged the system. Check the charge in the flushing cylinder before proceeding.

- A Set the recovery machine for liquid recovery and start the recovery machine. Open the gauge set valves to allow the recovery machine to pull a vacuum on the existing system line set and indoor unit coil.
- B Invert the cylinder of clean HCFC-22 and open its valve to allow liquid refrigerant to flow into the system through the vapor line valve. Allow the refrigerant to pass from the cylinder and through the line set and the indoor unit coil before it enters the recovery machine.
- C After all of the liquid refrigerant has been recovered, switch the recovery machine to vapor recovery so that all of the HCFC-22 vapor is recovered. Allow the recovery machine to pull down to 0 the system.
- D Close the valve on the inverted HCFC-22 drum and the gauge set valves. Pump the remaining refrigerant out of the recovery machine and turn the machine off.

Figure 12. Removing Metering Device and Flushing

Installing Indoor Metering Device

This outdoor unit is designed for use in systems that use either an fixed orifice (RFC), or expansion valve (TXV) metering devices at the indoor coil.

The expansion valve can be installed internal or external to the indoor coil. In applications where an uncased coil is being installed in a field-provided plenum, install the expansion valve in a manner that will provide access for field servicing of the expansion valve. Refer to below illustration for reference during installation of expansion valve unit.

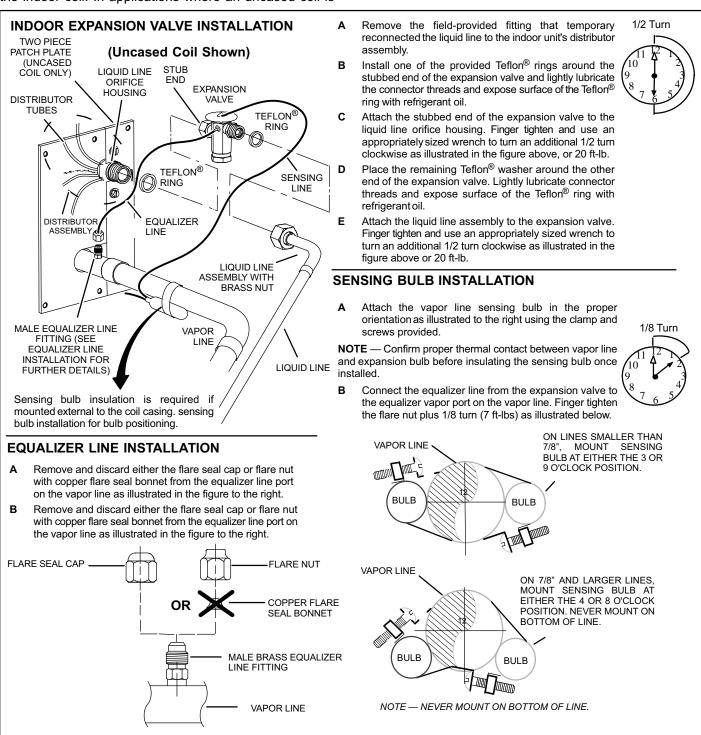


Figure 13. Installing Indoor Expansion Valve

A IMPORTANT

The Environmental Protection Agency (EPA) prohibits the intentional venting of HFC refrigerants during maintenance, service, repair and disposal of appliance. Approved methods of recovery, recycling or reclaiming must be followed.

A IMPORTANT

If this unit is being matched with an approved line set or indoor unit coil which was previously charged with mineral oil, or if it is being matched with a coil which was manufactured before January of 1999, the coil and line set must be flushed prior to installation. Take care to empty all existing traps. Polyol ester (POE) oils are used in Lennox units charged with HFC-410A refrigerant. Residual mineral oil can act as an insulator, preventing proper heat transfer. It can also clog the expansion device, and reduce the system performance and capacity.

Failure to properly flush the system per the instructions below will void the warranty.

Leak Test Line Set and Indoor Coil

WARNING

I OW

When using a high pressure gas such as dry nitrogen to pressurize a refrigeration or air conditioning system, use a regulator that can control the pressure down to 1 or 2 psig (6.9 to 13.8 kPa).

IMPORTANT

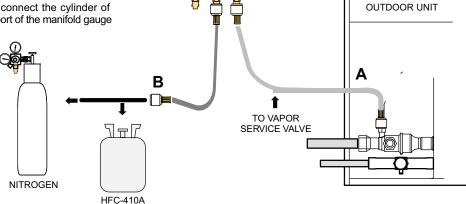
Leak detector must be capable of sensing HFC refrigerant.

WARNING

Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly.

Failure to follow this warning may result in personal injury or death.

MANIFOLD GAUGE SET


CONNECT GAUGE SET

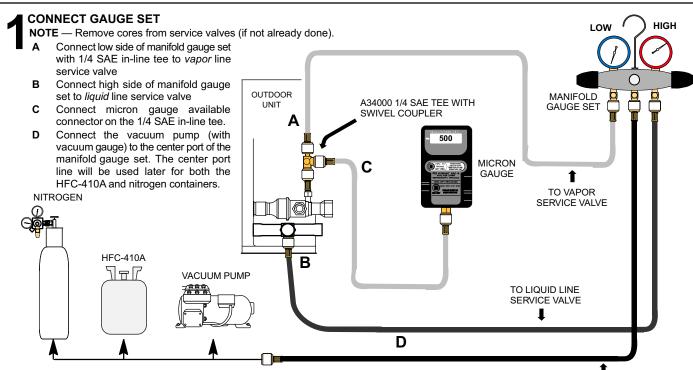
A Connect an HFC-410A manifold gauge set high pressure hose to the vapor valve service port.

NOTE — Normally, the high pressure hose is connected to the liquid line port. However, connecting it to the vapor port better protects the manifold gauge set from high pressure damage.

B With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set

NOTE — Later in the procedure, the HFC-410A container will be replaced by the nitrogen container

HIGH


TEST FOR LEAKS

After the line set has been connected to the indoor and outdoor units, check the line set connections and indoor unit for leaks. Use the following procedure to test for leaks:

- A With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set. Open the valve on the HFC-410A cylinder (vapor only).
- B Open the high pressure side of the manifold to allow HFC-410A into the line set and indoor unit. Weigh in a trace amount of HFC-410A. [A trace amount is a maximum of two ounces (57 g) refrigerant or three pounds (31 kPa) pressure]. Close the valve on the HFC-410A cylinder and the valve on the high pressure side of the manifold gauge set. Disconnect the HFC-410A cylinder.
- Connect a cylinder of dry nitrogen with a pressure regulating valve to the center port of the manifold gauge set.
- D Adjust dry nitrogen pressure to 150 psig (1034 kPa). Open the valve on the high side of the manifold gauge set in order to pressurize the line set and the indoor unit.
- E After a few minutes, open one of the service valve ports and verify that the refrigerant added to the system earlier is measurable with a leak detector.
- F After leak testing disconnect gauges from service ports.

Figure 14. Leak Test

Evacuating Line Set and Indoor Coil

EVACUATE THE SYSTEM

RECOMMEND MINIMUM 3/8" HOSE

A Open both manifold valves and start the vacuum pump.

Evacuate the line set and indoor unit to an absolute pressure of 23,000 microns (29.01 inches of mercury).

NOTE — During the early stages of evacuation, it is desirable to close the manifold gauge valve at least once. A rapid rise in pressure indicates a relatively large leak. If this occurs, **repeat the leak testing procedure**.

NOTE — The term **absolute pressure** means the total actual pressure within a given volume or system, above the absolute zero of pressure. Absolute pressure in a vacuum is equal to atmospheric pressure minus vacuum pressure.

- C When the absolute pressure reaches 23,000 microns (29.01 inches of mercury), perform the following:
 - Close manifold gauge valves
 - Close valve on vacuum pump
 - Turn off vacuum pump
 - Disconnect manifold gauge center port hose from vacuum pump
 - Attach manifold center port hose to a dry nitrogen cylinder with pressure regulator set to 150 psig (1034 kPa) and purge the hose.
 - Open manifold gauge valves to break the vacuum in the line set and indoor unit.
 - Close manifold gauge valves.
- D Shut off the dry nitrogen cylinder and remove the manifold gauge hose from the cylinder. Open the manifold gauge valves to release the dry nitrogen from the line set and indoor unit.
- E Reconnect the manifold gauge to the vacuum pump, turn the pump on, and continue to evacuate the line set and indoor unit until the absolute pressure does not rise above 500 microns (29.9 inches of mercury) within a 20-minute period after shutting off the vacuum pump and closing the manifold gauge valves.
- F When the absolute pressure requirement above has been met, disconnect the manifold hose from the vacuum pump and connect it to an upright cylinder of HFC-410A refrigerant. Open the manifold gauge valve 1 to 2 psig in order to release the vacuum in the line set and indoor unit.
- **G** Perform the following:
 - Close manifold gauge valves.
 - Shut off HFC-410A cylinder.
 - Reinstall service valve cores by removing manifold hose from service valve. Quickly install cores with core
 tool while maintaining a positive system pressure.
 - Replace stem caps and secure finger tight, then tighten an additional one-sixth (1/6) of a turn as illustrated.

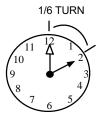


Figure 15. Evacuating System

A WARNING

Danger of Equipment Damage. Avoid deep vacuum operation. Do not use compressors to evacuate a system. Extremely low vacuums can cause internal arcing and compressor failure. Damage caused by deep vacuum operation will void warranty.

▲ CAUTION

Brazing alloys and flux contain materials which are hazardous to your health.

Avoid breathing vapors or fumes from brazing operations. Perform operations only in well ventilated areas.

Wear gloves and protective goggles or face shield to protect against burns.

Wash hands with soap and water after handling brazing alloys and flux.

Evacuating the system of non-condensables is critical for proper operation of the unit. Non-condensables are

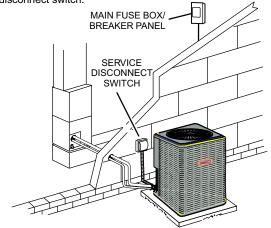
defined as any gas that will not condense under temperatures and pressures present during operation of an air conditioning system. Non-condensables and water suction combine with refrigerant to produce substances that corrode copper piping and compressor parts.

A IMPORTANT

Use a thermocouple or thermistor electronic vacuum gauge that is calibrated in microns. Use an instrument capable of accurately measuring down to 50 microns.

Electrical

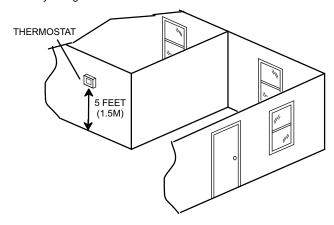
In the U.S.A., wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).


Refer to the furnace or air handler installation instructions for additional wiring application diagrams and refer to unit nameplate for minimum circuit ampacity and maximum overcurrent protection size.

24VAC TRANSFORMER

Use the transformer provided with the furnace or air handler for low-voltage control power (24VAC - 40 VA minimum)

SIZE CIRCUIT AND INSTALL SERVICE DISCONNECT SWITCH


Refer to the unit nameplate for minimum circuit ampacity, and maximum fuse or circuit breaker (HACR per NEC). Install power wiring and properly sized disconnect switch.

NOTE — Units are approved for use only with copper conductors. Ground unit at disconnect switch or to an earth ground.

INSTALL THERMOSTAT

Install room thermostat (ordered separately) on an inside wall approximately in the center of the conditioned area and 5 feet (1.5m) from the floor. It should not be installed on an outside wall or where it can be affected by sunlight or drafts.

NOTE — 24VAC, Class II circuit connections are made in the control panel.

▲WARNING

Electric Shock Hazard. Can cause injury or death. Unit must be grounded in accordance with national and local codes.

Line voltage is present at all components when unit is not in operation on units with single-pole contactors. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power supplies.

ROUTING HIGH VOLTAGE/ GROUND AND CONTROL WIRING

HIGH VOLTAGE / GROUND WIRES

Any excess high voltage field wiring should be trimmed and secured away from any low voltage field wiring. To facilitate a conduit, a cutout is located in the bottom of the control panel. Connect conduit to the control panel using a proper conduit fitting.

CONTROL WIRING

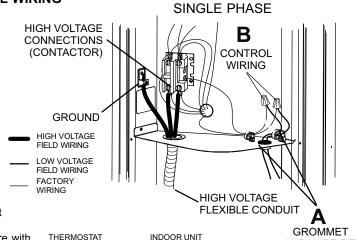
NOTE — Wire tie provides low voltage control wire strain relief and to maintain separation of field installed low and high voltage circuits.

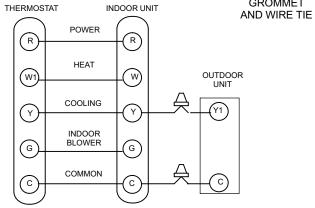
NOTE — For proper voltages, select thermostat wire (control wires) gauge per table above.

NOTE — Do not bundle any excess 24VAC control wires inside control panel.

Install low voltage wiring from outdoor to indoor unit and from thermostat to indoor unit as illustrated.

- A Run 24VAC control wires through hole with grommet and secure with provided wire tie.
- **B** Make 24VAC thermostat wire connections. Locate the two wires from the contactor and make connection using field provided wire nuts:
 - Yellow to Y1
 - Black to C (common)


WIRE RUN LENGTH


LESS THAN 100' (30 METERS)

MORE THAN 100' (30 METERS)

16

35°C MINIMUM.

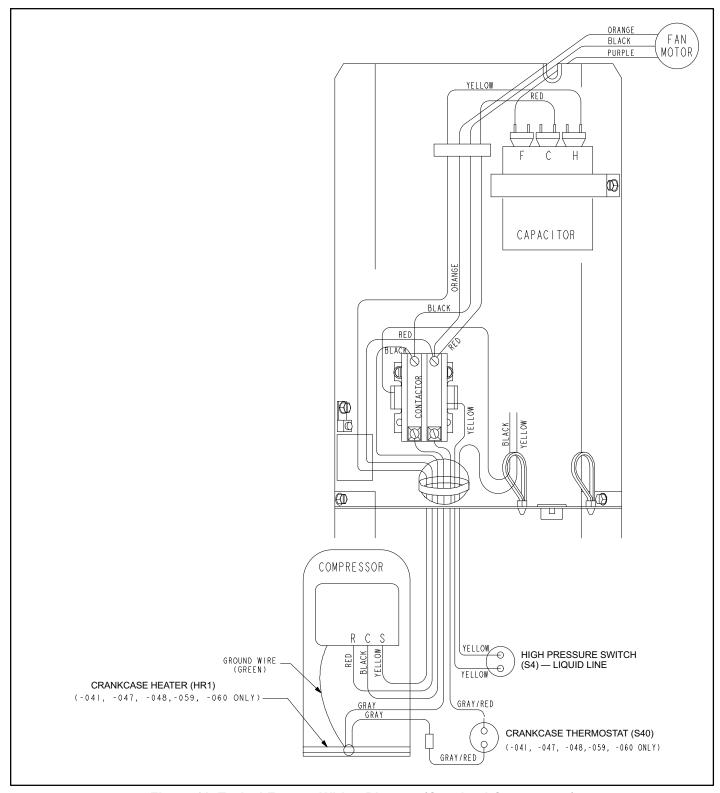


Figure 16. Typical Factory Wiring Diagram (Copeland Compressor)

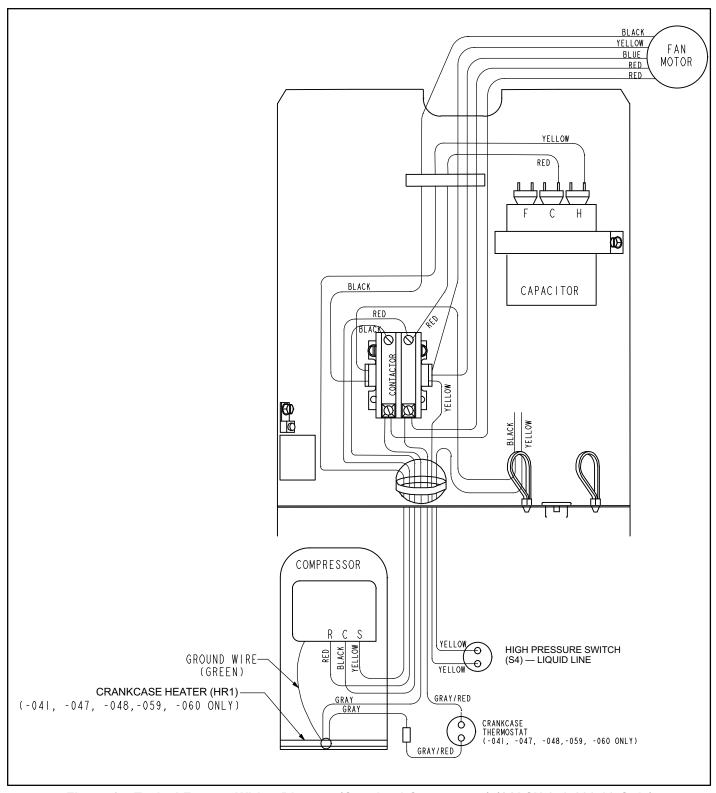


Figure 17. Typical Factory Wiring Diagram (Copeland Compressor) (14ACX-059-230-03 Only)

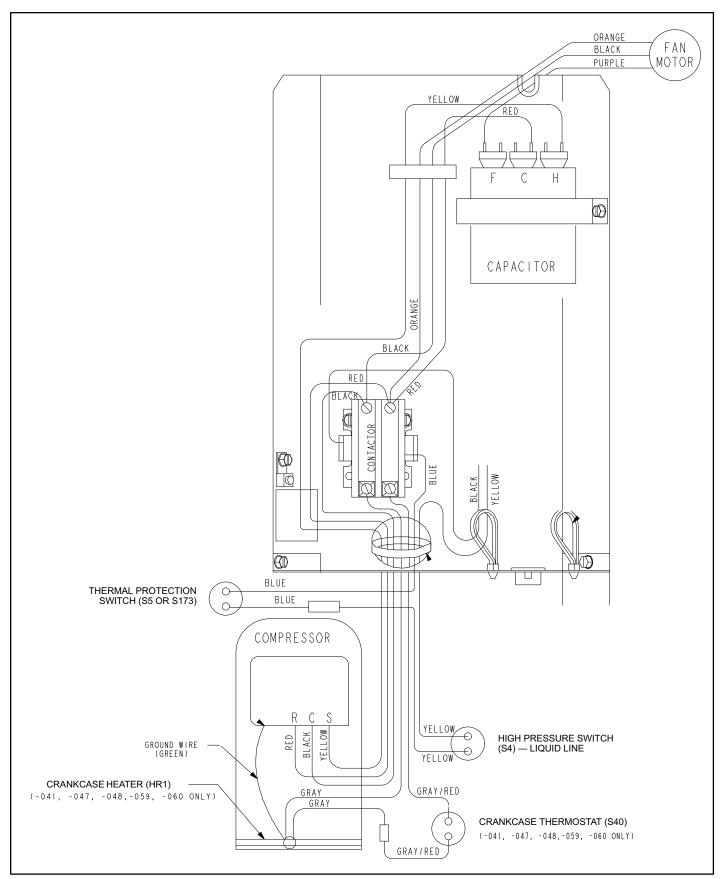


Figure 18. Typical Factory Wiring Diagram (Interlink Compressor)

System Operation

A IMPORTANT

Some scroll compressor have internal vacuum protector that will unload scrolls when suction pressure goes below 20 psig. A hissing sound will be heard when the compressor is running unloaded. Protector will reset when low pressure in system is raised above 40 psig. DO NOT REPLACE COMPRESSOR.

The outdoor unit and indoor blower will cycle on and off as dictated by demands from the room thermostat. When the thermostat's blower switch is in the **ON** position, the indoor blower will operate continuously.

HIGH PRESSURE SWITCH (S4)

14ACX units are equipped with a high-pressure switch that is located in the liquid line of the compressor as illustrated in figure on page 2 and figure 19 for the location of the manual reset button..

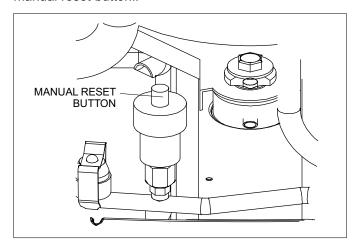


Figure 19. High Pressure Switch (S4) Manual Reset

The switch is a Single Pole, Single Throw (SPST), manual-reset switch which is normally closed and removes power from the compressor when discharge pressure rises above factory setting at 590 ± 10 psi. The manual-reset button can be identified by a red cap that is press to preform the reset function.

CRANKCASE HEATER (HR1) AND THERMOSTAT (S40)

Compressor in models listed below are equipped with a 40 watt or 70 watt (all others), belly band type crankcase heater. HR1 prevents liquid from accumulating in the compressor. HR1 is controlled by a single pole, single through thermostat switch (S40) located on the liquid line (see figure 1 for location).

When liquid line temperature drops below 50° F the thermostat closes energizing HR1. The thermostat will open, de-energizing HR1 once liquid line temperature reaches 70° F.

The crankcase heater (HR1) and thermostat (S40) are used only on the following models:

14ACX-041-230-01

- 14ACX-047-230-01
- 14ACX-059-230-01
- 14ACX-048-230-XX (all models)
- 14ACX-060-230-XX (all models)

THERMAL PROTECTION SWITCH (S173) - COMPRESSOR MOUNTED

Some units are equipped with a compressor mounted normally closed temperature switch that prevents compressor damage due to overheating caused by internal friction. The switch is located on top of the compressor casing. This switch senses the compressor casing temperature and opens at 239-257°F (115°C-125°C) to shut off compressor operation. The auto-reset switch closes when the compressor casing temperature falls to 151-187°F (66°C-86°C), and the compressor is re-energized. This single-pole, single-throw (SPST) bi-metallic switch is wired in series with the 24V Y input signal to control compressor operation.

Maintenance

Maintenance and service must be performed by a qualified installer or service agency. At the beginning of each cooling season, the system should be checked as follows:

Outdoor Unit

- 1. Outdoor unit fan motor is pre-lubricated and sealed. No further lubrication is needed.
- 2. Visually inspect all connecting lines, joints and coils for evidence of oil leaks.
- 3. Check all wiring for loose connections.
- 4. Check for correct voltage at unit (unit operating).
- 5. Check amp draw on outdoor fan motor.

Motor Nameplate:	Actual:
------------------	---------

6. Inspect drain holes in coil compartment base and clean if necessary.

NOTE - If insufficient cooling occurs, the unit should be gauged and refrigerant charge should be checked.

Outdoor Coil

Clean and inspect outdoor coil (may be flushed with a water hose). Ensure power is off before cleaning.

NOTE — It may be necessary to flush the outdoor coil more frequently if it is exposed to substances which are corrosive or which block airflow across the coil (e.g., pet urine, cottonwood seeds, fertilizers, fluids that may contain high levels of corrosive chemicals such as salts) **Sea Coast** — Moist air in ocean locations can carry salt, which is corrosive to most metal. Units that are located near the ocean require frequent inspections and maintenance. These inspections will determine the necessary need to wash the unit including the outdoor coil. Consult your installing contractor for intervals/procedures for your geographic area or service contract.

Indoor Unit

- 1. Clean or change filters.
- 2. Lennox blower motors are prelubricated and permanently sealed. No more lubrication is needed.

- Adjust blower speed for cooling. Measure the pressure drop over the coil to determine the correct blower CFM. Refer to the unit information service manual for pressure drop tables and procedure.
- 4. Belt Drive Blowers Check belt for wear and proper tension.
- 5. Check all wiring for loose connections.
- 6. Check for correct voltage at unit. (blower operating)

	Motor Nameplate:_	Actual:
7.	Check amp draw on	blower motor.

Indoor Coil

- 1. Clean coil if necessary.
- 2. Check connecting lines, joints and coil for evidence of oil leaks.
- 3. Check condensate line and clean if necessary.

Start-Up and Performance Checklist								
Job Name	Job no		Date					
Job Location	City		State					
Installer	City		State					
Unit Model No Serial No		Service Technician						
Nameplate Voltage								
Rated Load Ampacity Compressor		Outdoor Fan						
Maximum Fuse or Circuit Breaker								
Electrical Connections Tight?	ean? 🔲	Supply Voltage (Unit Off)					
Indoor Blower RPM S.P. Drop Over Indoor (Dry)		Outdoor Coil Entering Air Temp.						
Discharge Pressure Suction Pressure		Refrigerant Charge Checked?						
Refrigerant Lines: - Leak Checked? Properly Insula	ated?	Outdoor Fan Ch	ecked?					
Service Valves: Fully Opened? Caps Tight?		Thermostat						
Voltage With Compressor Operating	Calibrated?	Properly Set? 🔲	Level?					

Sequence of Operations

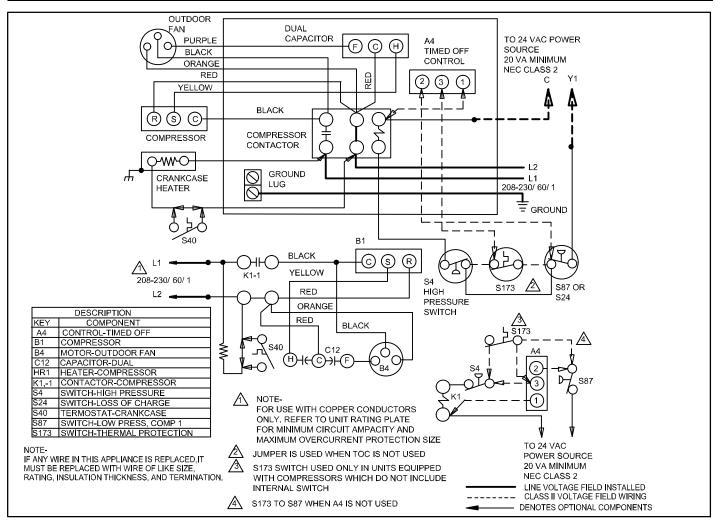


Figure 20. Wiring Diagram and Sequence of Operations (all models)

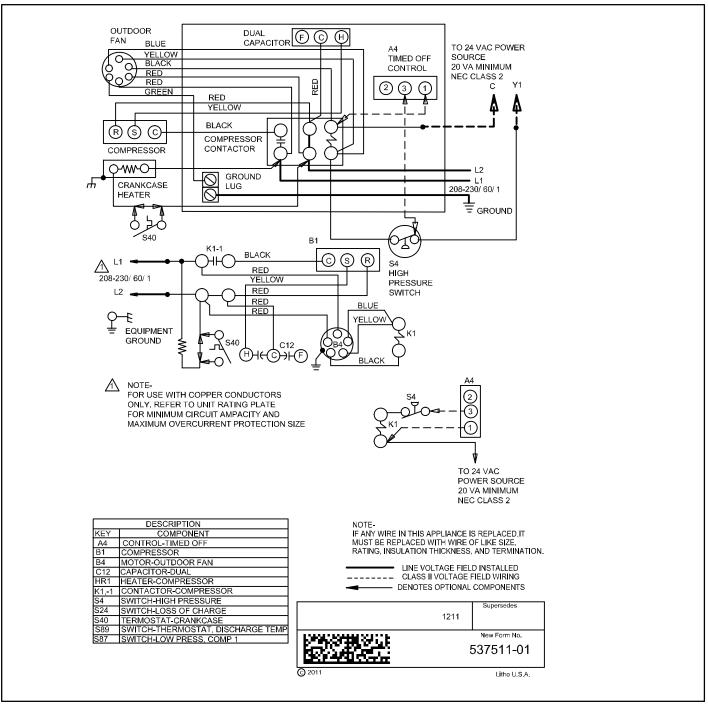


Figure 21. Typical Field Wiring Diagram (14ACX-059-230-03 only)

NOTE- The thermostat used may be electromechanical or electronic.

NOTE- Transformer in indoor unit supplies power (24 VAC) to the thermostat and outdoor unit controls.

COOLING:

- 1- Cooling demand initiates at Y1 in the thermostat.
- 2- 24VAC from indoor unit (Y1) energizes the TOC timed off control (if used) which energizes contactor K1 (provided S4 high pressure switch is closed).
- 3- K1-1 N.O. closes, energizing compressor (B1) and

outdoor fan motor (B4).

4- Compressor (B1) and outdoor fan motor (B4) begin immediate operation..

END OF COOLING DEMAND:

- 5- Cooling demand is satisfied. Terminal Y1 is de-energized.
- 6- Compressor contactor K1 is de-energized.
- 7- K1-1 opens and compressor (B1) and outdoor fan motor (B4) are de-energized and stop immediately.

Servicing Units Void of Charge

If the outdoor unit is void of refrigerant, clean the system using the procedure described below.

- Leak check system using procedure outlined in figure 14
- 2. Evacuate the system using procedure outlined in figure 15.
- 3. Use nitrogen to break the vacuum and install a new filter drier in the system.
- 4. Evacuate the system again using procedure outlined in figure 15..
- Weigh in refrigerant using procedure outlined under figure 25.

Unit Start-Up

A IMPORTANT

If unit is equipped with a crankcase heater, it should be energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

- 1. Rotate fan to check for binding.
- Inspect all factory- and field-installed wiring for loose connections.

- 3. After evacuation is complete, open the liquid line and suction line service valves to release the refrigerant charge (contained in outdoor unit) into the system.
- 4. Replace the stem caps and tighten as specified in *Operating Service Valves* on page 10.
- Check voltage supply at the disconnect switch. The voltage must be within the range listed on the unit's nameplate. If not, do not start the equipment until you have consulted with the power company and the voltage condition has been corrected.
- Set the thermostat for a cooling demand. Turn on power to the indoor indoor unit and close the outdoor unit disconnect switch to start the unit.
- 7. Recheck voltage while the unit is running. Power must be within range shown on the nameplate.
- 8. Check system for sufficient refrigerate using the procedures that follow.

System Refrigerant

This section outlines procedures for:

- 1. Connecting gauge set for testing and charging;
- 2. Checking and adjusting indoor airflow;
- 3. Adding or removing refrigerant.

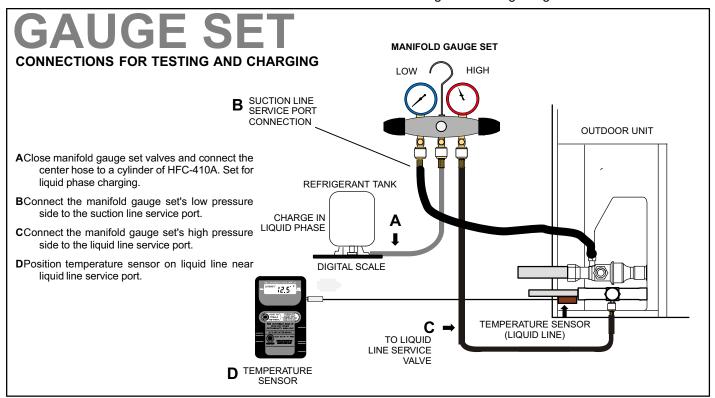
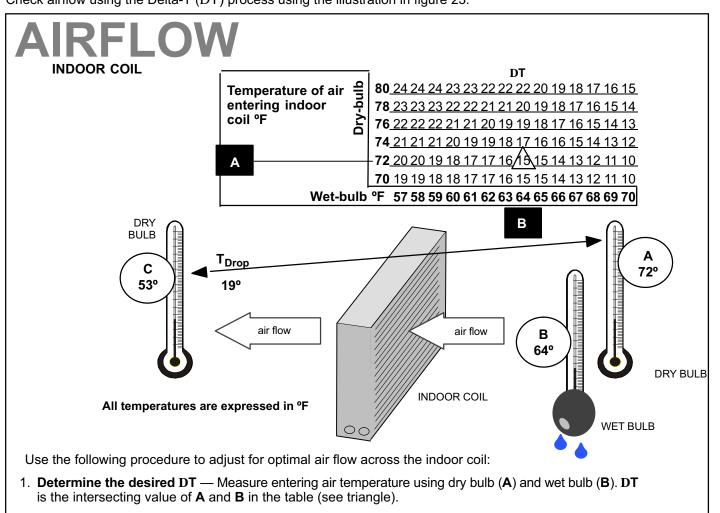



Figure 22. Gauge Set Setup and Connections

ADDING OR REMOVING REFRIGERANT

This system uses HFC-410A refrigerant which operates at much higher pressures than HCFC-22. The pre-installed liquid line filter drier is approved for use with HFC-410A only. Do not replace it with components designed for use with HCFC-22. This unit is NOT approved for use with coils which use capillary tubes or fixed orifices as a refrigerant metering device. Check airflow using the Delta-T (DT) process using the illustration in figure 23.

- 2. **Find temperature drop across coil** Measure the coil's dry bulb entering and leaving air temperatures (**A** and **C**). Temperature Drop Formula: (**T**_{Drop}) = **A** minus **C**.
- 3. **Determine if fan needs adjustment** If the difference between the measured T_{Drop} and the desired **DT** (T_{Drop} –**DT**) is within $\pm 3^{\circ}$, no adjustment is needed. See example below:

```
Assume DT = 15 and A temp. = 72°, these C temperatures would necessitate stated actions:

C° T<sub>Drop</sub> - DT = °F ACTION

53° 19 - 15 = 4 Increase the airflow

58° 14 - 15 = -1 (within ±3° range) no change
62° 10 - 15 = -5 Decrease the airflow

Changing air flow affects all temperatures; recheck temperatures to confirm that the temperature drop and DT are within ±3°.
```

4. **Adjust the fan speed** — See indoor unit instructions to increase/decrease fan speed.

Figure 23. Checking Indoor Airflow over Evaporator Coil using Delta-T Chart

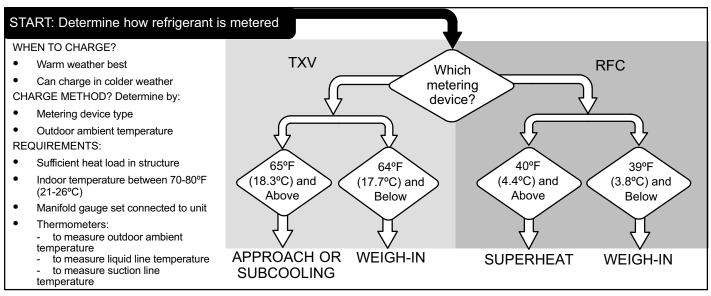


Figure 24. Determining Charge Method

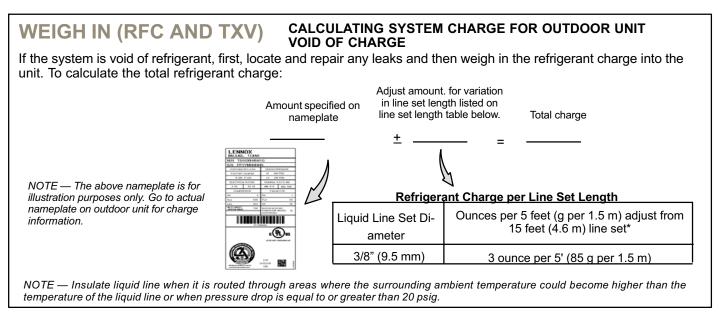


Figure 25. Using HFC-410A Weigh In Method

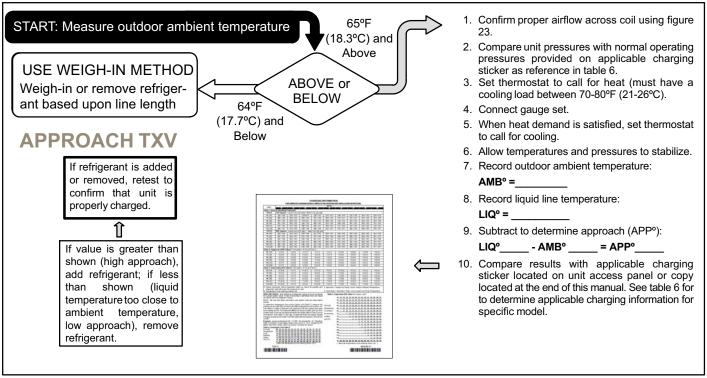


Figure 26. HFC-410A Approach TXV Charge

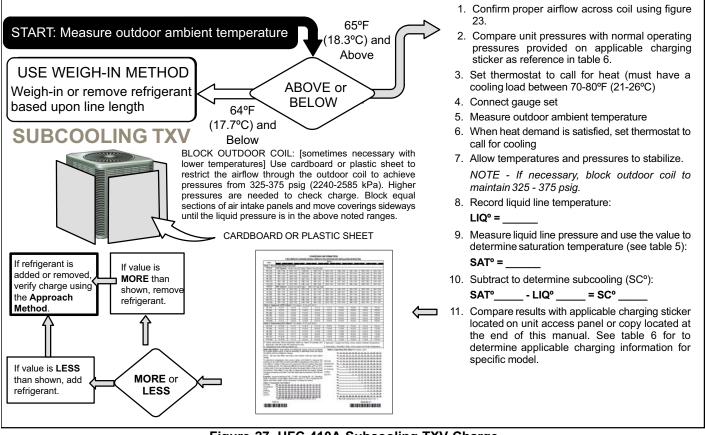


Figure 27. HFC-410A Subcooling TXV Charge

Table 5. HFC-410A Temperature — Pressure (Psig)

°F	°C	Psig	°F	°C	Psig
-40	-40.0	11.6	60	15.6	170
-35	-37.2	14.9	65	18.3	185
-30	-34.4	18.5	70	21.1	201
-25	-31.7	22.5	75	23.9	217
-20	-28.9	26.9	80	26.7	235
-15	-26.1	31.7	85	29.4	254
-10	-23.3	36.8	90	32.2	274
-5	-20.6	42.5	95	35.0	295
0	-17.8	48.6	100	37.8	317
5	-15.0	55.2	105	40.6	340
10	-12.2	62.3	110	43.3	365
15	-9.4	70.0	115	46.1	391
20	-6.7	78.3	120	48.9	418
25	-3.9	87.3	125	51.7	446
30	-1.1	96.8	130	54.4	476
35	1.7	107	135	57.2	507
40	4.4	118	140	60.0	539
45	7.2	130	145	62.8	573
50	10.0	142	150	65.6	608
55	12.8	155			

Table 6. Applicable Charging Sticker by Unit Model Number

Unit Model Number				Unit Charging Sti	cker Numbers		
	401216S	401289S	580053-01	580336-01	580438-01	580488-01	580754-01
		Re	eferenced chargin	g stickers above ar	e located at the end	of this manual.	
14ACX-018-230-XX	-01	-02, -10			-11	-12, -13	-16
14ACX-024-230-XX	-01		-02, -10	-11, -12		-13, -16	-16
14ACX-030-230-XX		-01	-02, -10	-12	-11	-13	-16
14ACX-036-230-XX		-01	-02, -10		-13	-11, -14, -15	-16
14ACX-041-230-XX				-01, -02		-03	-16
14ACX-042-230-XX			-01, -10	-11	-12	-13, -14	-16
14ACX-047-230-XX				-01	-02	-03	-16
14ACX-048-230-XX			-01, -10	-11, -13, -14	-12	-15	-16
14ACX-059-230-XX				-01	-02	-04	-16
14ACX-060-230-XX			-01,	-11	-12, -13	-14	-16

14 Series (AC) CHARGING INFORMATION

FOR COMPLETE CHARGING DETAILS. REFER TO THE OUTDOOR UNIT INSTALLATION INSTUCTIONS.

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE - Be sure that filters and indoor and outdoor coils are clean before testing.

To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 1. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 1. Evaporator Coil Delta-T

Dry bulb	80_	24	24	24	23	23	22	22	22	20	19	18	17	16	15	
temperature	78_	23	23	23	22	22	21	21	20	19	18	17	16	15	14	
of air	76_	22	22	22	21	21	20	19	19	18	17	16	15	14	13	
entering	74_	21	21	21	20	19	19	18	17	16	16	15	14	13	12	
indoor	72	20	20	19	18	17	17	16	15	15	14	13	12	11	10	
coil (°F)	70	19	19	18	18	17	17	16	15	15	14	13	12	11	10	
` ,	٩F	57	58	59	60	61	62	63	64	65	66	67	68	69	70	_
		- [W	et bu	ılb te	embe	ratu	re of	air e	enter	ina ir	ndoo	r coi	ı —	1	

Table 2. Superheat (SH) Value REC System - +5°E

Table 2. St	ibei	ııca	. (3	.,, v	alu	C 171	CO	yolei	11 - <u>-</u>	JI					
	40_	15	18	20	23	26	29	32	34	38	41	43	46	48	51
	45	13	16	18	21	24	27	30	33	36	39	41	44	46	49
	50	11	14	16	19	22	25	28	31	34	37	39	42	44	47
Dry bulb	55	9	12	14	17	20	23	27	30	33	36	38	40	42	44
temperature	66	7	10	12	15	18	21	24	27	30	33	35	38	40	43
of ambient	65	-	6	10	13	16	19	21	24	27	30	33	36	38	41
air entering	70	-	-	7	10	13	16	19	21	24	27	30	33	36	39
outdoor	75	-	-	-	6	9	12	15	18	21	24	28	31	34	37
unit (°F)	80	-	-	-	-	5	8	12	15	18	21	25	28	31	35
` ,	85	-	-	-	-	-	-	8	11	15	19	22	26	30	33
	90	-	-	-	-	-	-	5	9	13	16	20	24	27	31
	95	-	-	-	-	-	-	-	6	10	14	18	22	25	29
	100	-	-	-	-	-	-	-	-	8	12	16	21	24	28
	105	-	-	-	-	-	-	-	-	5	9	13	17	22	26
	110	-	-	-	-	-	-	-	-	-	6	11	15	20	25
	115	-	-	-	-	-	-	-	-	-	-	8	14	18	24
	°F	50	52	54	56	58	60	62	64	66	68	70	72	74	76
		1	W	et bu	ılb te	mpe	ratu	re of	air e	enter	ing i	ndoo	r coi	ı —	1

	10/06
12/	1006□

Model	-18	-24	-30	-36	-42	-48	-60
Table 3	- Normal	Operating	Pressur	es ¹			
°F(°C) ²	TXV Syst	em - Liquid	Line (<u>+</u> 10 p	sig) / Vapo	r Line (<u>+</u> 5 p	sig)	
65 (18)	222 / 140	233 / 138	230 / 136	240 / 137	236 / 138	238 / 136	239 / 133
75 (24)	259 / 143	271 / 140	265 / 139	278 / 139	273 / 141	277 / 139	278 / 136
85 (29)	301 / 145	313 / 143	308 / 141	321 / 140	318 / 143	320 / 139	323 / 138
95 (35)	346 / 146	361 / 145	355 / 144	368 / 142	366 / 146	369 / 141	370 / 140
105 (41)	396 / 148	412 / 147	405 / 146	419 / 144	417 / 148	422 / 144	415 / 143
115 (45)	451 / 151	468 / 149	461 / 148	477 / 146	475 / 151	481 / 148	476 / 147
	RFC Syst	em - Liquid	Line (<u>+</u> 10 p	osig) / Vapo	r Line (<u>+</u> 5 p	sig)	•
65 (18)	223 / 123	230 / 121	231 / 123	234 / 130	248 / 135	240 / 126	244 / 125
75 (24)	253 / 131	272 / 133	270 / 132	270 / 136	285 / 141	281 / 133	281 / 131
85 (29)	299 / 139	312 / 140	314 / 140	313 / 141	327 / 145	324 / 138	324 / 136
95 (35)	343 / 145	361 / 144	359 / 144	358 / 145	372 / 149	371 / 142	370 / 141
105 (41)	392 / 149	409 / 149	408 / 147	409 / 150	421 / 152	420 / 146	418 / 145
115 (46)	445 / 154	467 / 152	467 / 151	463 / 152	476 / 154	473 / 150	471 / 147
Table 4	- Approac	ch (APP)	Values³ -	TXV Syste	m - °F (°C)	<u>+</u> 1°F (0.5°C	;)
Table 4	- Approa c 3 (1.7)	ch (APP) ' 5 (2.8)	Values³ - 4 (2.2)	TXV Syste 5 (2.8)	m - °F (°C) 6 (3.3)	<u>+</u> 1°F (0.5°C	8 (4.4)
		. ` ′			. ' '	. `	.′
65 (18)	3 (1.7)	5 (2.8)	4 (2.2)	5 (2.8)	6 (3.3)	7 (3.9)	8 (4.4)
65 (18) 75 (24)	3 (1.7) 5 (2.8)	5 (2.8) 6 (3.3)	4 (2.2) 5 (2.8)	5 (2.8) 5 (2.8)	6 (3.3) 8 (4.4)	7 (3.9) 8 (4.4)	8 (4.4) 9 (5.0)
65 (18) 75 (24) 85 (29)	3 (1.7) 5 (2.8) 6 (3.3)	5 (2.8) 6 (3.3) 6 (3.3)	4 (2.2) 5 (2.8) 6 (3.3)	5 (2.8) 5 (2.8) 6 (3.3)	6 (3.3) 8 (4.4) 8 (4.4)	7 (3.9) 8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45) Table 5	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3) Values ⁴ -	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3) TXV Syste	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) em - °F (°C)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0) ±1°F (0.5°C	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45) Table 5 65 (18)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8) - Subcoo	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3) ling (SC)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3) TXV Syster 11 (6.1)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0) ±1°F (0.5°C	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45) Table 5 65 (18) 75 (24)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8) - Subcoo 10 (5.6) 6 (3.3)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3) ling (SC) 10 (5.6) 8 (4.4)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6) 8 (4.4)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3) TXV Syste 11 (6.1) 11 (6.1)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6) 7 (3.9)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0) ±1°F (0.5°C 8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 0 (5.0) 0 (8 (4.4) 7 (3.9)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45) Table 5 65 (18) 75 (24) 85 (29)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8) - Subcoo 10 (5.6) 6 (3.3) 6 (3.3)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3) ling (SC) 10 (5.6) 8 (4.4) 8 (4.4)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6) 8 (4.4) 7 (3.9)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3) TXV Syste 11 (6.1) 11 (6.1) 11 (6.1)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6) 7 (3.9) 7 (3.9)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0) ±1°F (0.5°C 8 (4.4) 8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 0 (5.0) 0 (7 (3.9) 8 (4.4)
65 (18) 75 (24) 85 (29) 95 (35) 105 (41) 115 (45) Table 5 65 (18) 75 (24) 85 (29) 95 (35)	3 (1.7) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 5 (2.8) - Subcoo 10 (5.6) 6 (3.3) 6 (3.3) 6 (3.3)	5 (2.8) 6 (3.3) 6 (3.3) 7 (3.9) 6 (3.3) 6 (3.3) 10 (5.6) 8 (4.4) 8 (4.4)	4 (2.2) 5 (2.8) 6 (3.3) 6 (3.3) 6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6) 8 (4.4) 7 (3.9) 7 (3.9)	5 (2.8) 5 (2.8) 6 (3.3) 6 (3.3) 5 (2.8) 6 (3.3) TXV Syste 11 (6.1) 11 (6.1) 10 (5.6)	6 (3.3) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 8 (7.4) 8 (7.4) 8 (7.4) 8 (7.4) 9 (7.4) 10 (5.6) 10 (5.6)	7 (3.9) 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4) 9 (5.0) +1°F (0.5°C 8 (4.4) 8 (4.4) 8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 9 (5.0) 2 (8 (4.4) 7 (3.9) 8 (4.4) 7 (3.9)

- the pressures to vary.
- Temperature of air entering outside coil.
- Approach = Liquid Line Temp. minus Outdoor Ambient Temperature
- 4 Subcooling = Saturation Temp, minus Liquid Line Temp Temperature

401216S □/₄₀₁₂₁₆•□

CHARGING PROCEDURE

Model

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE - Be sure that filters and indoor and outdoor coils are clean before testing.

To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 1. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value: if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 1. Evaporator Coil Delta-T

Dry bulb	80_	24	24	24	23	23	22	22	22	20	19	18	17	16	15	
temperature	78	23	23	23	22	22	21	21	20	19	18	17	16	15	14	
of air	76	22	22	22	21	21	20	19	19	18	17	16	15	14	13	
entering	74	21	21	21	20	19	19	18	17	16	16	15	14	13	12	_
indoor	72	20	20	19	18	17	17	16	15	15	14	13	12	11	10	_
coil (°F)	70	19	19	18	18	17	17	16	15	15	14	13	12	11	10	_
` '	٩F	57	58	59	60	61	62	63	64	65	66	67	68	69	70	_
		ſ	W	et bu	ılb te	empe	ratu	re of	air e	enter	ing ir	ndoo	r coi		1	

Table 2. Superheat (SH) Value RFC System - +5°F

I GOIC E. OC	·PC:	cu	٠,١٠,	, •	uiu		0 0	, 3101	·· <u>·</u>	0 1					
	40_	15	18	20	23	26	29	32	34	38	41	43	46	48	51
	45_	13	16	18	21	24	27	30	33	36	39	41	44	46	49
	50	11	14	16	19	22	25	28	31	34	37	39	42	44	47
Dry bulb	55	9	12	14	17	20	23	27	30	33	36	38	40	42	44
temperature	66	7	10	12	15	18	21	24	27	30	33	35	38	40	43
of ambient	65	-	6	10	13	16	19	21	24	27	30	33	36	38	41
air entering	70_	-	-	7	10	13	16	19	21	24	27	30	33	36	39
outdoor	75_	-	-	-	6	9	12	15	18	21	24	28	31	34	37
unit (°F)	80_	-	-	-	-	5	8	12	15	18	21	25	28	31	35
	85	-	-	-	-	-	-	8	11	15	19	22	26	30	33
	90	-	-	-	-	-	-	5	9	13	16	20	24	27	31
	95_	-	-	-	-	-	-	-	6	10	14	18	22	25	29
	100	-	-	-	-	-	-	-	-	8	12	16	21	24	28
	105	-	-	-	-	-	-	-	-	5	9	13	17	22	26
	110	-	-	-	-	-	-	-	-	-	6	11	15	20	25
	115	-	-	-	-	-	-	-	-	-	-	8	14	18	24
	°F	50	52	54	56	58	60	62	64	66	68	70	72	74	76
		[W	et bu	ılb te	mpe	ratu	re of	air e	enter	ing ir	ndoo	r coi	I]

Table 2			•				<u> </u>
Table 3	- Normal	Operating	y Pressur	es ¹			
°F(°C) ²	TXV Syst	em - Liquid	Line (<u>+</u> 10 p	osig) / Vapo	r Line (<u>+</u> 5 p	sig)	
65 (18)	230 / 138	233 / 138	230 / 136	240 / 137	236 / 138	238 / 136	239 / 133
75 (24)	265 / 140	271 / 140	265 / 139	278 / 139	273 / 141	277 / 139	278 / 136
85 (29)	307 / 142	313 / 143	308 / 141	321 / 140	318 / 143	320 / 139	323 / 138
95 (35)	351 / 144	361 / 145	355 / 144	368 / 142	366 / 146	369 / 141	370 / 140
105 (41)	407 / 145	412 / 147	405 / 146	419 / 144	417 / 148	422 / 144	415 / 143
115 (45)	466 / 147	468 / 149	461 / 148	477 / 146	475 / 151	481 / 148	476 / 147
°F(°C) ²	RFC Syst	em - Liquid	Line (<u>+</u> 10	osig) / Vapo	r Line (<u>+</u> 5 p	sig)	
65 (18)	232 / 124	230 / 121	231 / 123	234 / 130	248 / 135	240 / 126	244 / 125
75 (24)	267 / 131	272 / 133	270 / 132	270 / 136	285 / 141	281 / 133	281 / 131
85 (29)	307 / 138	312 / 140	314 / 140	313 / 141	327 / 145	324 / 138	324 / 136
95 (35)	351 / 143	361 / 144	359 / 144	358 / 145	372 / 149	371 / 142	370 / 141
105 (41)	400 / 148	409 / 149	408 / 147	409 / 150	421 / 152	420 / 146	418 / 145
115 (46)	457 / 153	467 / 152	467 / 151	463 / 152	476 / 154	473 / 150	471 / 147
Table 4	- Approac	ch (APP)	Values ³ -	TXV Syste	m - °F (°C)	<u>+</u> 1°F (0.5°C	
65 (18)	4 (2.2)	5 (2.8)	4 (2.2)	5 (2.8)	6 (3.3)	7 (3.9)	8 (4.4)
75 (24)	5 (2.8)	6 (3.3)	5 (2.8)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)
85 (29)	6 (3.3)	6 (3.3)	6 (3.3)	6 (3.3)	8 (4.4)	8 (4.4)	9 (5.0)
95 (35)	5 (2.8)	7 (3.9)	2 (2 2)				
	- ()	1 (3.3)	6 (3.3)	6 (3.3)	8 (4.4)	8 (4.4)	9 (5.0)
105 (41)	3 (1.7)	6 (3.3)	6 (3.3)	6 (3.3) 5 (2.8)	8 (4.4) 8 (4.4)	8 (4.4) 8 (4.4)	9 (5.0)
105 (41) 115 (45)			, ,	. ,	, ,		. ,
115 (45)	3 (1.7) 3 (1.7)	6 (3.3) 6 (3.3)	6 (3.3) 6 (3.3)	5 (2.8) 6 (3.3)	8 (4.4)	8 (4.4) 9 (5.0)	9 (5.0) 9 (5.0)
115 (45)	3 (1.7) 3 (1.7)	6 (3.3)	6 (3.3) 6 (3.3)	5 (2.8) 6 (3.3)	8 (4.4) 8 (4.4)	8 (4.4) 9 (5.0)	9 (5.0) 9 (5.0)
115 (45) Table 5	3 (1.7) 3 (1.7) - Subcoo	6 (3.3) 6 (3.3) ling (SC)	6 (3.3) 6 (3.3) Values ⁴ -	5 (2.8) 6 (3.3) TXV Syste	8 (4.4) 8 (4.4) em - °F (°C)	8 (4.4) 9 (5.0) +1°F (0.5°C	9 (5.0) 9 (5.0)
115 (45) Table 5 65 (18)	3 (1.7) 3 (1.7) - Subcoo 10 (5.6)	6 (3.3) 6 (3.3) ling (SC)	6 (3.3) 6 (3.3) Values ⁴ -	5 (2.8) 6 (3.3) TXV Syste 11 (6.1)	8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6)	8 (4.4) 9 (5.0) <u>+</u> 1°F (0.5°C) 8 (4.4)	9 (5.0) 9 (5.0) 0 (5.0) 8 (4.4)
115 (45) Table 5 65 (18) 75 (24)	3 (1.7) 3 (1.7) - Subcoo 10 (5.6) 6 (3.3)	6 (3.3) 6 (3.3) ling (SC) 10 (5.6) 8 (4.4)	6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6) 8 (4.4)	5 (2.8) 6 (3.3) TXV Syste 11 (6.1) 11 (6.1)	8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6) 7 (3.9)	8 (4.4) 9 (5.0) +1°F (0.5°C 8 (4.4) 8 (4.4)	9 (5.0) 9 (5.0) 0) 8 (4.4) 7 (3.9)
115 (45) Table 5 65 (18) 75 (24) 85 (29)	3 (1.7) 3 (1.7) - Subcoo 10 (5.6) 6 (3.3) 6 (3.3)	6 (3.3) 6 (3.3) ling (SC) 10 (5.6) 8 (4.4) 8 (4.4)	6 (3.3) 6 (3.3) Values ⁴ - 10 (5.6) 8 (4.4) 7 (3.9)	5 (2.8) 6 (3.3) TXV Syste 11 (6.1) 11 (6.1) 11 (6.1)	8 (4.4) 8 (4.4) em - °F (°C) 10 (5.6) 7 (3.9) 7 (3.9)	8 (4.4) 9 (5.0) +1°F (0.5°C 8 (4.4) 8 (4.4) 8 (4.4)	9 (5.0) 9 (5.0) 0 (5.0) 0 (8 (4.4) 7 (3.9) 8 (4.4)

¹ Typical pressures; indoor evaporator match up, indoor air quantity, and evaporator load will cause the pressures to vary.

11/07 **2**/1107

401289S □/₄₀₁₂₈₉•□

² Temperature of air entering outside coil.

³ Approach = Liquid Line Temp. minus Outdoor Ambient Temperature

⁴ Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

Model

Table 3- Normal Operating Pressures¹

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE - Be sure that filters and indoor and outdoor coils are clean before testing.

To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 1. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within ±3°F (±1.8°C) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 1. Evaporator Coil Delta-T

Table 2. Superheat (SH) Value RFC System - +5°F

Dry bulb	80	24	24	24	23	23	22	22	22	20	19	18	17	16	15
temperature	78	23	23	23	22	22	21	21	20	19	18	17	16	15	14
of air	76	22	22	22	21	21	20	19	19	18	17	16	15	14	13
entering	74_	21	21	21	20	19	19	18	17	16	16	15	14	13	12
indoor	72	20	20	19	18	17	17	16	15	15	14	13	12	11	10
coil (°F)	70_	19	19	18	18	17	17	16	15	15	14	13	12	11	10
` '	°F	57	58	59	60	61	62	63	64	65	66	67	68	69	70
		ſ	W	et bu	ılb te	mpe	ratu	re of	air e	nter	ing ir	ndoo	r coi	I	1

	40_	15	18	2 0	23	26	29	32	34	38	41	43	46	48	51
	45_	13	16	18	21	24	27	30	33	36	39	41	44	46	49
	50	11	14	16	19	22	25	28	31	34	37	39	42	44	47
Dry bulb	55	9	12	14	17	20	23	27	30	33	36	38	40	42	44
temperature	66_	7	10	12	15	18	21	24	27	30	33	35	38	40	43
of ambient	65_	-	6	10	13	16	19	21	24	27	30	33	36	38	41
air entering	70	-	-	7	10	13	16	19	21	24	27	30	33	36	39
outdoor	75	-	-	-	6	9	12	15	18	21	24	28	31	34	37
unit (°F)	80	-	-	-	-	5	8	12	15	18	21	25	28	31	35
` '	85	-	-	-	-	-	-	8	11	15	19	22	26	30	33
	90_	-	-	-	-	-	-	5	9	13	16	20	24	27	31
	95	-	-	-	-	_	_	_	6	10	14	18	22	25	29
	100	-	-	-	-	_	_	_	_	8	12	16	21	24	28
	105	-	-	-	-	-	-	-	-	5	9	13	17	22	26
	440										_	44	4 -	20	25

115 - - - - - - - - - 8 14 18 24

°F 50 52 54 56 58 60 62 64 66 68 70 72 74 76

Wet bulb temperature of air entering indoor coil

°F(°C) ²	TXV System - Liq	uid Line (<u>+</u> 10 psig) /	Vapor Line (<u>+</u> 5 psig)
65 (18)	238 / 132	236 / 138	238 / 136	239 / 133
75 (24)	273 / 138	273 / 141	277 / 139	278 / 136
85 (29)	316 / 142	318 / 143	320 / 139	323 / 138
95 (35)	366 / 144	366 / 146	369 / 141	370 / 140
105 (41)	420 / 147	417 / 148	422 / 144	415 / 143
115 (45)	480 / 149	475 / 151	481 / 148	476 / 147
°F(°C) ²	RFC System - Liq	uid Line (<u>+</u> 10 psig)	Vapor Line (<u>+</u> 5 psig)
65 (18)	241 / 131	248 / 135	240 / 126	244 / 125
75 (24)	277 / 136	285 / 141	281 / 133	281 / 131
85 (29)	321 / 141	327 / 145	324 / 138	324 / 136
95 (35)	366 / 145	372 / 149	371 / 142	370 / 141
105 (41)	416 / 149	421 / 152	420 / 146	418 / 145
115 (46)	480 / 152	476 / 154	473 / 150	471 / 147
Table 4	- Approach (API	P) Values³ - ⊤XV	System - °F (°C) ±1	°F (0.5°C)
65 (18)	2 (1.1)	6 (3.3)	7 (3.9)	8 (4.4)
75 (24)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)
85 (29)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
95 (35)	7 (3.9)	8 (4.4)	8 (4.4)	9 (5.0)
105 (41)	6 (3.3)	8 (4.4)	8 (4.4)	9 (5.0)
115 (45)	6 (3.3)	8 (4.4)	9 (5.0)	9 (5.0)
Table 5	- Subcooling (S	C) Values ⁴ - TXV	System - °F (°C) +1	°F (0.5°C)
65 (18)	13 (7.2)	10 (5.6)	8 (4.4)	8 (4.4)
75 (24)	9 (5.0)	7 (3.9)	8 (4.4)	7 (3.9)
85 (29)	7 (3.9)	7 (3.9)	8 (4.4)	8 (4.4)
95 (35)	8 (4.4)	7 (3.9)	8 (4.4)	7 (3.9)
105 (41)	9 (5.0)	7 (3.9)	8 (4.4)	6 (3.3)
115 (46)	10 (5.6)	7 (3.9)	7 (3.9)	6 (3.3)
the pre 2 Tempe 3 Approx	I pressures; indoor eva essures to vary. erature of air entering ou ach = Liquid Line Temp oling = Saturation Temp	utside coil. . minus Outdoor Ambie		orator load will cause

580053-01

□/₅₈₀₀₅₃□₀₁□

-60

03/10 □2/0310□

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

Size	-018	-024	-030	-036	-041	-042	-047	-048	-059/-060
Table 1- Norm	al Operating Pr	essures ¹							
°F(°C) ²			TXV Sy	/stem - Liquid Li	ne (<u>+</u> 10 psig) /	Suction Line (±	5 psig)		
65 (18)	230 / 138	225 / 135	226 / 129	238 / 132	233 / 142	236 / 138	233 / 139	238 / 136	239 / 133
75 (24)	265 / 140	260 / 138	259 / 134	273 / 138	256 / 143	273 / 141	272 / 141	277 / 139	278 / 136
85 (29)	307 / 142	304 / 141	301 / 140	316 / 142	299 / 145	318 / 143	315 / 142	320 / 139	323 / 138
95 (35)	351 / 144	351 / 142	348 / 142	366 / 144	343 / 146	366 / 146	361 / 144	369 / 141	370 / 140
105 (41)	407 / 145	403 / 145	399 / 144	420 / 147	389 / 148	417 / 148	413 / 145	422 / 144	415 / 143
115 (45)	466 / 147	463 / 147	456 / 146	480 / 149	452 / 151	475 / 151	465 / 148	481 / 148	476 / 147
°F(°C) ²		1	RFC Sys	stem - Liquid Lin	ie (<u>+</u> 10 psig) /	Suction Line (+	5 psig)		II.
65 (18)	232 / 124	228 / 125	229 / 128	241 / 131	228 / 131	248 / 135	232 / 125	240 / 126	244 / 125
75 (24)	267 / 131	261 / 131	261 / 132	277 / 136	263 / 138	285 / 141	268 / 133	281 / 133	281 / 131
85 (29)	307 / 138	303 / 137	305 / 138	321 / 141	306 / 144	327 / 145	312 / 140	324 / 138	324 / 136
95 (35)	351 / 143	347 / 142	349 / 142	366 / 145	348 / 148	372 / 149	357 / 144	371 / 142	370 / 141
105 (41)	400 / 148	394 / 146	396 / 146	416 / 149	395 / 151	421 / 152	406 / 149	420 / 146	418 / 145
115 (46)	457 / 153	447 / 150	449 / 150	480 / 152	453 / 155	476 / 154	460 / 152	473 / 150	471 / 147
able 2- Appro	oach (APP) Valu	es ³ -TXV Syster	n - °F (°C) <u>+</u> 1°F	(0.5°C)	П	1	1	11	
65 (18)	4 (2.2)	2 (1.1)	2 (1.1)	2 (1.1)	3 (1.7)	6 (3.3)	9 (5.0)	7 (3.9)	8 (4.4)
75 (24)	5 (2.8)	4 (2.2)	4 (2.2)	5 (2.8)	3 (1.7)	8 (4.4)	9 (5.0)	8 (4.4)	9 (5.0)
85 (29)	6 (3.3)	4 (2.2)	6 (3.3)	8 (4.4)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
95 (35)	5 (2.8)	4 (2.2)	5 (2.8)	7 (3.9)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
105 (41)	3 (1.7)	4 (2.2)	5 (2.8)	6 (3.3)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
115 (45)	3 (1.7)	3 (1.7)	4 (2.2)	6 (3.3)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
Table 3- Subc	ooling (SC) Valu	ies4 -TXV Syster	m - °F (°C) <u>+</u> 1°F	(0.5°C)	11	1	1	1	
65 (18)	10 (5.6)	10 (5.6)	11 (6.1)	13 (7.2)	9 (5.0)	10 (5.6)	6 (3.3)	8 (4.4)	8 (4.4)
75 (24)	6 (3.3)	7 (3.9)	8 (4.4)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	7 (3.9)
85 (29)	6 (3.3)	8 (4.4)	6 (3.3)	7 (3.9)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	8 (4.4)
95 (35)	6 (3.3)	9 (5.0)	6 (3.3)	8 (4.4)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	7 (3.9)
105 (41)	10 (5.6)	9 (5.0)	7 (3.9)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	6 (3.3)
115 (46)	10 (5.6)	10 (5.6)	8 (4.4)	10 (5.6)	6 (3.3)	7 (3.9)	5 (2.8)	7 (3.9)	6 (3.3)

Typical pressures; indoor evaporator match up, indoor air quantity, and 3 evaporator load will cause the pressures to vary.

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE - Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 4. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within $\pm 3^{\circ}$ F ($\pm 1.8^{\circ}$ C) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 4. Evaporator Coil Delta-T

The probability of the probability of air of

³ Approach = Liquid Line Temp. minus Outdoor Ambient Temperature

Table 5. Superheat (SH) Value RFC System - ±5°F

Dry bulb temperature of ambient air entering outdoor unit (°F)

40	4 -	40	20	22	20	20	22	24	20	44	40	40	40	- 4
40_	15	18	20	23	20	29	32	34	38	41	43	40	48	<u> </u>
45_	13	16	18	21	24	27	30	33	36	39	41	44	46	49
50_	11	14	16	19	22	25	28	31	34	37	39	42	44	47
55_	9	12	14	17	20	23	27	30	33	36	38	40	42	44
66	7	10	12	15	18	21	24	27	30	33	35	38	40	43
65_	-	6	10	13	16	19	21	24	27	30	33	36	38	41
70_	-	-	7	10	13	16	19	21	24	27	30	33	36	39
75_	-	-	-	6	9	12	15	18	21	24	28	31	34	37
80_	-	-	-	-	5	8	12	15	18	21	25	28	31	35
85	_	_	-	_	-	-	8	11	15	19	22	26	30	33
90	_	_	-	_	-	-	5	9	13	16	20	24	27	31
95	-	_	_	_	_	-	_	6	10	14	18	22	25	29
100	-	-	-	-	-	-	-	-	8	12	16	21	24	28
105	-	-	-	-	-	-	-	-	5	9	13	17	22	26
110	-	_	_	-	_	-	-	-	_	6	11	15	20	25
115	_	_	_	_	_	_	_	_	_	_	8	14	18	24
°F	50	52	54	56	58	60	62	64	66	68	70	72	74	76

[Wet bulb temperature of air entering indoor coil]

580336-01 580336 01

08/10 **1**2/0810

² Temperature of air entering outside coil.

⁴ Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

CHARGING INFORMATION FOR 13ACD UNIT SHIPPED WITH DRY NITROGEN CHARGE

This unit is factory shipped with a nitrogen gas holding charge to prevent moisture infiltration. The 13ACD unit is intended as a replacement component for an existing (previously installed) system. For best results, indoor temperature should be between 70°F (21°C) and 80°F (27°C). Be sure to monitor system pressures while charging. Charging should be done with unit operating in the cooling mode.

Initial Weigh-In Charge

- 12. After evacuation of the outdoor unit, line set, and indoor unit is complete, close the manifold gauge set valves. Disconnect vacuum pump from center hose of gauge set.
- 13. Connect the center hose of the gauge set to a cylinder of HCFC-22 and purge the hose. Then, place the cylinder upside down on a scale.
- 14. Open the high side manifold gauge valve and weigh in liquid refrigerant. Refer to unit nameplate to determine correct weigh-in charge.
- 15. Close the high side manifold gauge valve when proper charge has been weighed in.

Optimizing System Charge

NOTE — Refrigerant tank should be turned right-side-up to deliver refrigerant gas during charge optimizing procedure.

- Make sure the refrigerant cylinder is right-side-up so that it will deliver gas during the charge optimizing procedure.
- 2. Set the thermostat for a cooling demand. Turn on power to the indoor unit and close the outdoor unit disconnect switch to start the unit.
- 3. Allow unit to run for five minutes to allow pressures to stabilize.
- 4. Check and adjust indoor airflow using procedure provided below.
- Use either approach, subcooling or superheat method (see table 3 and 4) to optimize system charge. Adjust charge as necessary.

NOTE — Complete procedures for approach, subcooling and superheat methods are located in the unit installation instruction.

6. Replace the stem and service port caps and tighten.

Adjusting Indoor Airflow

NOTE — Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 1. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value; if too low, decrease the indoor fan speed. If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: Assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 1. Su	per	hea	t (S	H) V	/alu	e RF	C S	/ster	n - +	5°F					
	40_	15	18	2 0	23	26	29	32	34	38	41	43	46	48	51
	45_	13	16	18	21	24	27	30	33	36	39	41	44	46	49
	50_	11	14	16	19	22	25	28	31	34	37	39	42	44	47
Dry bulb	55_	9	12	14	17	20	23	27	30	33	36	38	40	42	44
temperature	66_	7	10	12	15	18	21	24	27	30	33	35	38	40	43
of ambient	65_	-	6	10	13	16	19	21	24	27	30	33	36	38	41
air entering	70_	-	-	7	10	13	16	19	21	24	27	30	33	36	39
outdoor	75_	-	-	-	6	9	12	15	18	21	24	28	31	34	37
unit (°F)	80	-	-	-	-	5	8	12	15	18	21	25	28	31	35
, ,	85_	-	-	-	-	-	-	8	11	15	19	22	26	30	33
	90_	-	-	-	-	-	-	5	9	13	16	20	24	27	31
	95_	-	-	-	-	-	-	-	6	10	14	18	22	25	29
	100	-	-	-	-	-	-	-	-	8	12	16	21	24	28
	105	-	-	-	-	-	-	-	-	5	9	13	17	22	26
	110	-	-	-	-	-	-	-	-	-	6	11	15	20	25
	115	-	-	-	-	-	-	-	-	-	-	8	14	18	24
	°F	50	52	54	56	58	60	62	64	66	68	70	72	74	76
		[W	et bu	ılb te	mpe	ratu	re of	air e	nter	ing ir	ndoo	r coi]

Charging Temperatures and Pressures										
Model	-18	-24	-30	-36	-42	-48	-60			
Table 2-	Normal Op	erating Pre	ssures ¹							
°F(°C) ²	TXV Systen	n - Liquid Line	(<u>+</u> 10 psig) / \	/apor Line (<u>+</u> 5	psig)					
65 (18)	138 / 79	148 / 79	147 / 75	155 / 79	147 / 78	144 / 77	152 / 73			
70 (21)	148 / 80	160 / 79	159 / 75	169 / 80	158 / 78	152 / 77	164 / 75			
75 (24)	160 / 80	174 / 80	172 / 76	183 / 81	172 / 79	163 / 78	177 / 77			
80 (27)	174 / 81	188 / 81	186 / 77	199 / 81	189 / 79	179 / 78	192 / 78			
85 (29)	188 / 81	203 / 81	201 / 77	215 / 82	205 / 80	195 / 79	208 / 79			
90 (32)	204 / 81	220 / 82	216 / 78	233 / 82	222 / 81	212 / 80	225 / 80			
95 (35)	219 / 82	236 / 83	233 / 79	252 / 83	241 / 81	229 / 80	243 / 80			
100 (38)	236 / 82	253 / 83	250 / 80	271 / 83	259 / 82	245 / 81	261 / 81			
105 (41)	253 / 83	272 / 84	268 / 80	291 / 84	279 / 82	265 / 81	280 / 82			
110 (43)	272 / 84	291 / 85	287 / 81	311 / 85	299 / 83	287 / 82	299 / 83			
115 (45)	291 / 84	311 / 85	306 / 82	331 / 86	320 / 84	309 / 83	320 / 83			
°F(°C) ²	Fixed Orific	e - Liquid Line	e (<u>+</u> 10 psig) /	Vapor Line (±	5 psig)	ļ.				
65 (18)	139 / 67	147 / 71	148 / 65	162 / 75	158 / 72	151 / 71	152 / 68			
70 (21)	149 / 70	159 / 73	161 / 67	174 / 76	170 / 75	161 / 73	165 / 71			
75 (24)	161 /74	172 / 75	175 / 70	187 / 78	182 / 76	172 / 75	178 / 73			
80 (27)	175 / 77	186 / 77	190 / 73	201 / 79	195 / 78	185 / 76	193 / 76			
85 (29)	189 / 79	200 / 79	205 / 75	215 / 81	209 / 80	198 / 77	208 / 78			
90 (32)	203 / 81	216 / 81	221 / 77	231 / 82	224 / 81	213 / 79	224 / 80			
95 (35)	218 / 82	232 / 82	237 / 79	247 / 83	240 / 82	227 / 80	239 / 81			
100 (38)	234 / 83	247 / 83	254 / 80	265 / 84	256 / 84	243 / 81	258 / 82			
105 (41)	251 / 85	264 / 85	271 / 81	283 / 85	273 / 85	259 / 82	276 / 83			
110 (43)	269 / 86	285 / 86	289 / 82	302 / 86	290 / 86	276 / 84	294 / 85			
115 (45)	287 / 87	302 / 87	308 / 83	321 / 87	310 / 87	293 / 85	313 / 86			
Table 3-	Approach	(APP) Value	es ³ - TXV S	ystem - °F (°C) <u>+</u> 1°F (0.5°C)					
All	6 (3.3)	6 (3.3)	8 (4.4)	12 (6.7)	5 (2.8)	6 (3.3)	7 (3.8)			
Table 4-	Subcooling	g (SC) Valu	es ⁴ - TXV S	ystem - °F (°C	c) <u>+</u> 1°F (0.5°C))				
All	7 (3.8)	12 (6.7)	9 (5)	10 (5.6)	14 (8)	10 (5.6)	13 (7.2)			

- 1 Typical pressures; indoor evaporator match up, indoor air quantity, and evaporator load will cause the pressures to vary.
- 2 Temperature of air entering outside coil.
- 3 Approach = Liquid Line Temp. minus Outdoor Ambient Temperature
- Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

	1	1/1(U
a ₂ /	11	10	

CHARGING INFORMATION FOR 13ACD UNIT SHIPPED WITH DRY NITROGEN CHARGE

This unit is factory shipped with a nitrogen gas holding charge to prevent moisture infiltration. The 13ACD unit is intended as a replacement component for an existing (previously installed) system. For best results, indoor temperature should be between 70°F (21°C) and 80°F (27°C). Be sure to monitor system pressures while charging. Charging should be done with unit operating in the cooling mode.

Initial Weigh-In Charge

- After evacuation of the outdoor unit, line set, and indoor unit is complete, close the manifold gauge set valves. Disconnect vacuum pump from center hose of gauge set.
- 8. Connect the center hose of the gauge set to a cylinder of HCFC-22 and purge the hose. Then, place the cylinder upside down on a scale.
- Open the high side manifold gauge valve and weigh in liquid refrigerant. Refer to unit nameplate to determine correct weigh-in charge.
- Close the high side manifold gauge valve when proper charge has been weighed in.

Optimizing System Charge

NOTE — Refrigerant tank should be turned right-side-up to deliver refrigerant gas during charge optimizing procedure.

- Make sure the refrigerant cylinder is right-side-up so that it will deliver gas during the charge optimizing procedure.
- 2. Set the thermostat for a cooling demand. Turn on power to the indoor unit and close the outdoor unit disconnect switch to start the unit.
- 3. Allow unit to run for five minutes to allow pressures to stabilize.
- 4. Check and adjust indoor airflow using procedure provided below.
- Use either approach, subcooling or superheat method (see table 3 and 4) to optimize system charge. Adjust charge as necessary.

NOTE — Complete procedures for approach, subcooling and superheat methods are located in the unit installation instruction.

6. Replace the stem and service port caps and tighten.

Adjusting Indoor Airflow

NOTE — Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 1. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value; if too low, decrease the indoor fan speed. If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: Assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 5. Superheat (SH) Value RFC System - ±5°F										
Unit Capacity	<i>i</i>	-0`18 ´	-024	-030	-036	-042	-048	-060		
	65	26	23	33	22	23	21	30		
	70	22	23	30	21	22	20	25		
Outdoor	75	19	21	26	20	21	19	22		
temperature	80	16	18	22	18	20	17	20		
(°F)	85	13	16	18	16	19	14	17		
` '	90	10	13	14	13	18	11	12		
	95	7	10	7	10	16	6	7		
	100	4	6	3	5	14	2	1		
	105	2	2	1	2	11	1	1		

		Charging	j Tempera	tures and	Pressure	s	
Model	-18	-24	-30	-36	-42	-48	-60
Table 6-	Normal Op	erating Pre	essures ¹	•		•	•
°F(°C) ²	TXV System	n - Liquid Line	e (<u>+</u> 10 psig) / \	/apor Line (<u>+</u> 5	psig)		
65 (18)	138 / 79	148 / 79	147 / 75	155 / 79	147 / 78	144 / 77	152 / 73
70 (21)	148 / 80	160 / 79	159 / 75	169 / 80	158 / 78	152 / 77	164 / 75
75 (24)	160 / 80	174 / 80	172 / 76	183 / 81	172 / 79	163 / 78	177 / 77
80 (27)	174 / 81	188 / 81	186 / 77	199 / 81	189 / 79	179 / 78	192 / 78
85 (29)	188 / 81	203 / 81	201 / 77	215 / 82	205 / 80	195 / 79	208 / 79
90 (32)	204 / 81	220 / 82	216 / 78	233 / 82	222 / 81	212 / 80	225 / 80
95 (35)	219 / 82	236 / 83	233 / 79	252 / 83	241 / 81	229 / 80	243 / 80
100 (38)	236 / 82	253 / 83	250 / 80	271 / 83	259 / 82	245 / 81	261 / 81
105 (41)	253 / 83	272 / 84	268 / 80	291 / 84	279 / 82	265 / 81	280 / 82
110 (43)	272 / 84	291 / 85	287 / 81	311 / 85	299 / 83	287 / 82	299 / 83
115 (45)	291 / 84	311 / 85	306 / 82	331 / 86	320 / 84	309 / 83	320 / 83
°F(°C) ²	Fixed Orific	e - Liquid Line	e (<u>+</u> 10 psig) /	Vapor Line (±	5 psig)		
65 (18)	140 / 71	149 / 72	147 / 63	163 / 75	154 / 72	149 / 74	143 / 68
70 (21)	151 / 74	159 / 73	161 / 67	175 / 77	165 / 74	158 / 76	156 / 71
75 (24)	163 /76	172 / 75	176 / 71	187 / 78	173 / 76	169 / 77	169 / 73
80 (27)	176 / 78	186 / 77	190 / 74	202 / 80	189 / 77	180 / 79	183 / 76
85 (29)	190 / 80	200 / 79	206 / 76	217 / 81	202 / 79	192 / 80	198 / 78
90 (32)	205 / 82	216 / 80	222 / 78	232 / 82	217 / 80	206 / 82	213 / 80
95 (35)	220 / 83	232 / 82	239 / 80	248 / 83	233 / 82	222 / 83	228 / 81
100 (38)	236 / 84	247 / 83	256 / 81	266 / 84	248 / 83	238 / 84	245 / 82
105 (41)	252 / 85	265 / 84	273 / 82	279 / 85	265 / 84	255 / 85	262 / 84
110 (43)	269 / 86	280 / 85	291 / 83	302 / 86	283 / 86	273 / 86	279 / 85
115 (45)	288 / 87	303 / 87	309 / 84	320 / 87	298 / 86	292 / 88	297 / 86
		. ,		,) <u>+</u> 1°F (0.5°C)		
All	6 (3.3)	6 (3.3)	8 (4.4)	12 (6.7)	5 (2.8)	6 (3.3)	7 (3.8)
Table 8-			es4 - TXV S	ystem - °F (°C) <u>+</u> 1°F (0.5°C))	·
All	7 (3.8)	12 (6.7)	9 (5)	10 (5.6)	14 (8)	10 (5.6)	13 (7.2)
4 Timinal			ماممن سيطملم			ممريمم الثير لممم	Maa maaaa

- 1 Typical pressures; indoor evaporator match up, indoor air quantity, and evaporator load will cause the pressures to vary.
- 2 Temperature of air entering outside coil.
- 3 Approach = Liquid Line Temp. minus Outdoor Ambient Temperature
- 4 Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

Size	-018	-024	-030	-036	-041	-042	-047	-048	-059/-060
Table 1- Norm	nal Operating P	ressures ¹							
°F(°C) ²			TXV S	/stem - Liquid L	ine (<u>+</u> 10 psig)	/ Suction Line (<u>+</u> 5 psig)		
65 (18)	230 / 138	225 / 135	226 / 129	238 / 132	233 / 142	236 / 138	233 / 139	238 / 136	239 / 133
75 (24)	265 / 140	260 / 138	259 / 134	273 / 138	256 / 143	273 / 141	272 / 141	277 / 139	278 / 136
85 (29)	307 / 142	304 / 141	301 / 140	316 / 142	299 / 145	318 / 143	315 / 142	320 / 139	323 / 138
95 (35)	351 / 144	351 / 142	348 / 142	366 / 144	343 / 146	366 / 146	361 / 144	369 / 141	370 / 140
105 (41)	407 / 145	403 / 145	399 / 144	420 / 147	389 / 148	417 / 148	413 / 145	422 / 144	415 / 143
115 (45)	466 / 147	463 / 147	456 / 146	480 / 149	452 / 151	475 / 151	465 / 148	481 / 148	476 / 147
°F(°C) ²		1	RFC Sy	stem - Liquid Li	ne (<u>+</u> 10 psig)	/ Suction Line	(<u>+</u> 5 psig)	1	1
65 (18)	232 / 124	228 / 125	229 / 128	241 / 131	228 / 131	248 / 135	232 / 125	240 / 126	244 / 125
75 (24)	267 / 131	261 / 131	261 / 132	277 / 136	263 / 138	285 / 141	268 / 133	281 / 133	281 / 131
85 (29)	307 / 138	303 / 137	305 / 138	321 / 141	306 / 144	327 / 145	312 / 140	324 / 138	324 / 136
95 (35)	351 / 143	347 / 142	349 / 142	366 / 145	348 / 148	372 / 149	357 / 144	371 / 142	370 / 141
105 (41)	400 / 148	394 / 146	396 / 146	416 / 149	395 / 151	421 / 152	406 / 149	420 / 146	418 / 145
115 (46)	457 / 153	447 / 150	449 / 150	480 / 152	453 / 155	476 / 154	460 / 152	473 / 150	471 / 147
Table 2- Appr	oach (APP) Val	ues ³ -TXV Syst	em - °F (°C) <u>+</u> 1	°F (0.5°C)				II.	
65 (18)	4 (2.2)	2 (1.1)	2 (1.1)	2 (1.1)	3 (1.7)	6 (3.3)	9 (5.0)	7 (3.9)	8 (4.4)
75 (24)	5 (2.8)	4 (2.2)	4 (2.2)	5 (2.8)	3 (1.7)	8 (4.4)	9 (5.0)	8 (4.4)	9 (5.0)
85 (29)	6 (3.3)	4 (2.2)	6 (3.3)	8 (4.4)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
95 (35)	5 (2.8)	4 (2.2)	5 (2.8)	7 (3.9)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
105 (41)	3 (1.7)	4 (2.2)	5 (2.8)	6 (3.3)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)
115 (45)	3 (1.7)	3 (1.7)	4 (2.2)	6 (3.3)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
Table 3- Subc	ooling (SC) Val	ues4 -TXV Syst	em - °F (°C) <u>+</u> 1	°F (0.5°C)	1	11	1	1	1
65 (18)	10 (5.6)	10 (5.6)	11 (6.1)	13 (7.2)	9 (5.0)	10 (5.6)	6 (3.3)	8 (4.4)	6 (3.3) / 8 (4.4)
75 (24)	6 (3.3)	7 (3.9)	8 (4.4)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	5 (2.8) / 7 (3.9)
85 (29)	6 (3.3)	8 (4.4)	6 (3.3)	7 (3.9)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	5 (2.8) / 8 (4.4)
95 (35)	6 (3.3)	9 (5.0)	6 (3.3)	8 (4.4)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	4 (2.2) / 7 (3.9)
105 (41)	10 (5.6)	9 (5.0)	7 (3.9)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	4 (2.2) / 6 (3.3)
115 (46)	10 (5.6)	10 (5.6)	8 (4.4)	10 (5.6)	6 (3.3)	7 (3.9)	5 (2.8)	7 (3.9)	3 (1.7) / 6 (3.3)
Typical pres	ssures: indoor e	vanorator mate	h un indoor ai	r quantity and	2	·		·	1

Dry bulb

temperature

of ambient

air entering

outdoor

unit (°F)

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE - Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 4. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within $\pm 3^{\circ}F$ ($\pm 1.8^{\circ}C$) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 4. Evaporator Coil Delta-T

Dry bulb **80** 24 24 24 23 23 22 22 22 20 19 18 17 16 15 temperature 23 23 23 22 22 21 21 20 19 18 17 16 15 14 22 22 22 21 21 20 19 19 18 17 16 15 14 13 of air entering **74** 21 21 21 20 19 19 18 17 16 16 15 14 13 12 indoor **72** 20 20 19 18 17 17 16 15 15 14 13 12 11 10 coil (°F) **70** 19 19 18 18 17 17 16 15 15 14 13 12 11 10 57 58 59 60 61 62 63 64 65 66 67 68 69 70 [Wet bulb temperature of air entering indoor coil]

Table 5. Superheat (SH) Value RFC System - ±5°F

40 15 18 20 23 26 29 32 34 38 41 43 46 48 51 **45** 13 16 18 21 24 27 30 33 36 39 41 44 46 49 **50** 11 14 16 19 22 25 28 31 34 37 39 42 44 47 55 9 12 14 17 20 23 27 30 33 36 38 40 42 44 66 7 10 12 15 18 21 24 27 30 33 35 38 40 43 **65** - 6 10 13 16 19 21 24 27 30 33 36 38 41 **70** - - **7** 10 13 16 19 21 24 27 30 33 36 39 - - <u>6 9 12 15 18 21 24 28 31 34 37</u> - - - 5 8 12 15 18 21 25 28 31 35 <u>- - - - - 8 11 15 19 22 26 30 33</u> - - - - 5 9 13 16 20 24 27 31 **95** - - - - - 6 10 14 18 22 25 29 100 - - - - - - 8 12 16 21 24 28 **105** - - - <u>- - - 5 9 13 17 22 26</u> - - - - 6 11 15 20 25 **115** - - - - - - - 8 14 18 24 °F 50 52 54 56 58 60 62 64 66 68 70 72 74 76

[Wet bulb temperature of air entering indoor coil]

580438-01 □/₅₈₀₄₃₈□₀₁□

11 /11 02/11110

Typical pressures; indoor evaporator match up, indoor air quantity, and 3 Approach = Liquid Line Temp. minus Outdoor Ambient Temperature evaporator load will cause the pressures to vary.

² Temperature of air entering outside coil.

Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

14ACX	-018	-024	-030	-036	-041	-042	-047	-048	-059	-060
	nal Operating	Pressures ¹								
°F(°C) ²			TX	V System - Lic	uid Line (<u>+</u> 10	psig) / Suctio	n Line (<u>+</u> 5 ps	sig)		
65 (18)	230 / 138	220 / 125	226 / 129	238 / 132	233 / 142	236 / 138	233 / 139	280 / 130	239 / 133	239 / 133
75 (24)	265 / 140	250 / 130	259 / 134	273 / 138	256 / 143	273 / 141	272 / 141	310 / 136	278 / 136	278 / 136
85 (29)	307 / 142	300 / 142	301 / 140	316 / 142	299 / 145	318 / 143	315 / 142	320 / 140	323 / 138	323 / 138
95 (35)	351 / 144	350 / 145	348 / 142	366 / 144	343 / 146	366 / 146	361 / 144	390 / 149	370 / 140	370 / 140
105 (41)	407 / 145	410 / 149	399 / 144	420 / 147	389 / 148	417 / 148	413 / 145	430 / 150	415 / 143	415 / 143
115 (45)	466 / 147	470 / 155	456 / 146	480 / 149	452 / 151	475 / 151	465 / 148	499 / 155	476 / 147	476 / 147
°F(°C) ²			RFC	System - Liqu	uid Line (<u>+</u> 10	psig) / Suction	on Line (+ 5 p	sig)	Į.	
65 (18)	232 / 124	210 / 122	229 / 128	241 / 131	228 / 131	248 / 135	232 / 125	250 / 126	244 / 125	244 / 125
75 (24)	267 / 131	240 / 127	261 / 132	277 / 136	263 / 138	285 / 141	268 / 133	300 / 134	281 / 131	281 / 131
85 (29)	307 / 138	300 / 142	305 / 138	321 / 141	306 / 144	327 / 145	312 / 140	350 / 135	324 / 136	324 / 136
95 (35)	351 / 143	350 / 142	349 / 142	366 / 145	348 / 148	372 / 149	357 / 144	380 / 148	370 / 141	370 / 141
105 (41)	400 / 148	400 / 147	396 / 146	416 / 149	395 / 151	421 / 152	406 / 149	420 / 149	418 / 145	418 / 145
115 (46)	457 / 153	450 / 150	449 / 150	480 / 152	453 / 155	476 / 154	460 / 152	490 / 150	471 / 147	471 / 147
Гable 2- Appr	oach (APP) V	alues ³ -TXV S	ystem - °F (°C)) + 1°F (0.5°C)		1	1			
65 (18)	4 (2.2)	4 (2.2)	2 (1.1)	2 (1.1)	3 (1.7)	6 (3.3)	9 (5.0)	7 (3.9)	8 (4.4)	8 (4.4)
75 (24)	5 (2.8)	4 (2.2)	4 (2.2)	5 (2.8)	3 (1.7)	8 (4.4)	9 (5.0)	8 (4.4)	9 (5.0)	9 (5.0)
85 (29)	6 (3.3)	5 (2.8)	6 (3.3)	8 (4.4)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
95 (35)	5 (2.8)	5 (2.8)	5 (2.8)	7 (3.9)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
105 (41)	3 (1.7)	5 (2.8)	5 (2.8)	6 (3.3)	4 (2.2)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
115 (45)	3 (1.7)	4 (2.2)	4 (2.2)	6 (3.3)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)	9 (5.0)
Table 3- Subo	ooling (SC) V	alues ⁴ -TXV S	ystem - °F (°C) <u>+</u> 1°F (0.5°C)		1	1			
65 (18)	10 (5.6)	3 (1.7)	11 (6.1)	13 (7.2)	9 (5.0)	10 (5.6)	6 (3.3)	8 (4.4)	6 (3.3)	8 (4.4)
75 (24)	6 (3.3)	3 (1.7)	8 (4.4)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	5 (2.8)	7 (3.9)
85 (29)	6 (3.3)	3 (1.7)	6 (3.3)	7 (3.9)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	5 (2.8)	8 (4.4)
95 (35)	6 (3.3)	3 (1.7)	6 (3.3)	8 (4.4)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	4 (2.2	7 (3.9)
105 (41)	10 (5.6)	3 (1.7)	7 (3.9)	9 (5.0)	7 (3.9)	7 (3.9)	6 (3.3)	8 (4.4)	4 (2.2)	6 (3.3)
115 (46)	10 (5.6)	4 (2.2)	8 (4.4)	10 (5.6)	6 (3.3)	7 (3.9)	5 (2.8)	7 (3.9)	3 (1.7)	6 (3.3)

Typical pressures; indoor evaporator match up, indoor air quantity, and 3 Approach = Liquid Line Temp. minus Outdoor Ambient Temperature evaporator load will cause the pressures to vary.

airflow and the refrigerant charge. NOTE - Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 4. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within $\pm 3^{\circ}F$ ($\pm 1.8^{\circ}C$) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Table 4. Evaporator Coil Delta-T

 80
 24
 24
 24
 23
 23
 22
 22
 22
 20
 19
 18
 17
 16
 15

 78
 23
 23
 23
 22
 22
 21
 21
 20
 19
 18
 17
 16
 15
 14
 Dry bulb temperature **76** 22 22 22 21 21 20 19 19 18 17 16 15 14 13 of air entering 21 21 21 20 19 19 18 17 16 16 15 14 13 12 indoor **72** 20 20 19 18 17 17 16 15 15 14 13 12 11 10 coil (°F) 19 19 18 18 17 17 16 15 15 14 13 12 11 10 <u>°F 57 58 59 60 61 62 63 64 65 66 67 68 69 70</u> [Wet bulb temperature of air entering indoor coil]

Subcooling = Saturation Temp. minus Liquid Line Temp Temperature

	Suction line saturation temperature minus suction line temperature.												
Outdoor Temp (°F)													
Super-heat (°F) 35 30 25 22 18 12 8 5 5													
All measurements are at the service valves and are based on 80db / 67wb indoor temperature.													

Table 6. RFC Sizes

Table 0. I	0 012	63							
Unit Size	-18	-24	-30	-36	-41	-42	-47	-48	-60
RFC Size	0.053	0.057	0.065	0.072	TXV	0.076	TXV	0.083	0.093

580488-01 □/₅₈₀₄₈₈□₀₁□

5/2013 **□**₂/₅₂₀₁₃**□**

² Temperature of air entering outside coil.

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a Table 5. Superheat (SH) Value (RFC) proper system set-up. It may be necessary to alternately check and adjust the

14ACX/XC14 CHARGING INFORMATION

FOR COMPLETE CHARGING DETAILS, REFER TO THE INSTALLATION AND SERVICE PROCEDURES MANUAL (Corp. 0638-L10) AVAILABLE ON DAVENET.

Capacity	-018	-024	-030	-036	-041	-042	-047	-048	-059	-060
Table 7- Nori	nal Operating	Pressures ¹								
°F(°C) ²			TX	V System - Lic	quid Line (<u>+</u> 10	psig) / Suctio	n Line (<u>+</u> 5 ps	sig)		
65 (18)	228 / 133	231 / 139	224 / 137	235 / 138	233 / 142	231 / 140	233 / 139	238 / 136	239 / 133	239 / 133
75 (24)	264 / 135	266 / 141	260 / 140	274 / 140	256 / 143	269 / 142	272 / 141	277 / 139	278 / 136	278 / 136
85 (29)	311 / 144	310 / 144	304 / 142	319 / 142	299 / 145	312 / 144	315 / 142	320 / 139	323 / 138	323 / 138
95 (35)	360 / 147	358 / 146	353 / 145	367 / 144	343 / 146	360 / 145	361 / 144	369 / 141	370 / 140	370 / 140
105 (41)	414 / 148	411 / 148	405 / 147	420 / 147	389 / 148	414 / 148	413 / 145	422 / 144	415 / 143	415 / 143
115 (45)	472 / 151	468 / 150	461 / 150	478 / 149	452 / 151	471 / 150	465 / 148	481 / 148	476 / 147	476 / 147
°F(°C) ²			RFC	System - Liq	uid Line (<u>+</u> 10	psig) / Suction	on Line (<u>+</u> 5 p	sig)		
65 (18)	234 / 134	232 / 133	229 / 131	237 / 132	228 / 131	230 / 134	232 / 125	240 / 126	244 / 125	244 / 125
75 (24)	268 / 138	266 / 137	268 / 137	275 / 137	263 / 138	267 / 139	268 / 133	281 / 133	281 / 131	281 / 131
85 (29)	310 / 143	308 / 142	310 / 141	319 / 141	306 / 144	308 / 145	312 / 140	324 / 138	324 / 136	324 / 136
95 (35)	356 / 147	354 / 146	351 / 145	364 / 145	348 / 148	354 / 149	357 / 144	371 / 142	370 / 141	370 / 141
105 (41)	407 / 151	404 / 150	402 / 149	415 / 149	395 / 151	406 / 153	406 / 149	420 / 146	418 / 145	418 / 145
115 (46)	462 / 155	459 / 154	458 / 153	472 / 152	453 / 155	459 / 156	460 / 152	473 / 150	471 / 147	471 / 147
Table 8- App	roach (APP) V	alues³ - TXV S	ystem - °F (°C)	<u>+</u> 1°F (0.5°C)						
65 (18)	5 (2.8)	6 (3.3)	4 (2.2)	7 (3.9)	3 (1.7)	6 (3.3)	9 (5.0)	7 (3.9)	8 (4.4)	8 (4.4)
75 (24)	6 (3.3)	8 (4.4)	6 (3.3)	8 (4.4)	3 (1.7)	5 (2.8)	9 (5.0)	8 (4.4)	9 (5.0)	9 (5.0)
85 (29)	6 (3.3)	9 (5.0)	6 (3.3)	8 (4.4)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
95 (35)	6 (3.3)	9 (5.0)	6 (3.3)	7 (3.9)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
105 (41)	4 (2.2)	8 (4.4)	8 (4.4)	7 (3.9)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
115 (45)	4 (2.2)	7 (3.9)	5 (2.8)	6 (3.3)	5 (2.8)	4 (2.2)	8 (4.4)	9 (5.0)	9 (5.0)	9 (5.0)
Table 9- Sub	cooling (SC) V	/alues⁴ - TXV S	system - °F (°C) <u>+</u> 1°F (0.5°C)						
65 (18)	8 (4.4)	8 (4.4)	8 (4.4)	8 (4.4)	9 (5.0)	8 (4.4)	6 (3.3)	8 (4.4)	6 (3.3)	8 (4.4)
75 (24)	7 (3.9)	5 (2.8)	6 (3.3)	7 (3.9)	7 (3.9)	8 (4.4)	6 (3.3)	8 (4.4)	5 (2.8)	7 (3.9)
85 (29)	8 (4.4)	5 (2.8)	6 (3.3)	8 (4.4)	7 (3.9)	9 (5.0)	6 (3.3)	8 (4.4)	5 (2.8)	8 (4.4)
95 (35)	8 (4.4)	5 (2.8)	7 (3.9)	8 (4.4)	7 (3.9)	9 (5.0)	6 (3.3)	8 (4.4)	4 (2.2	7 (3.9)
105 (41)	10 (5.6)	6 (3.3)	7 (3.9)	9 (5.0)	7 (3.9)	10 (5.6)	6 (3.3)	8 (4.4)	4 (2.2)	6 (3.3)
115 (46)	11 (6.1)	7 (3.9)	7 (3.9)	9 (5.0)	6 (3.3)	10 (5.6)	5 (2.8)	7 (3.9)	3 (1.7)	6 (3.3)

Typical pressures; indoor evaporator match-up, indoor air quantity and evaporator load will cause the pressures to vary.

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a Table 10. Evaporator Coil Delta-T proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE: Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 10. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T **Table 11. RFC Sizes** should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Dry bulb temperature of air entering indoor coil (°F)

80 24 24 24 23 23 22 22 22 20 19 18 17 16 15 23 23 23 22 22 21 21 20 19 18 17 16 15 14 22 22 22 21 21 20 19 19 18 17 16 15 14 21 21 21 20 19 19 18 17 16 16 15 14 13 12 20 20 19 18 17 17 16 15 15 14 13 12 11 10 19 19 18 18 17 17 16 15 15 14 13 12 11 10 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[Wet bulb temperature of air entering indoor coil]

Capacity	-018	-024	-030	-036	-041	-042	-047	-048	-059	-060
RFC Size	0.053	0.060	0.067	0.071	TXV	0.083	TXV	0.083	TXV	0.093

Table 12. Superheat Value (RFC)* + 1°F ((U.5°C)
--	---------

	Outdoor Temp (°F)	65	` 70´	75	80	85	90	95	100	105
С	-018	21	21	21	20	19	18	16	13	10
Ă	-024	23	22	22	21	19	17	14	10	8
P	-030	22	20	19	17	15	13	12	10	6
C	-036	21	20	19	17	15	13	10	8	5
ĭ	-042	23	22	20	18	15	12	8	4	2
Ţ	-048	35	30	25	22	18	12	8	5	5
Y	-060	35	30	25	22	18	12	8	5	5

^{*}Suction line saturation temperature minus suction line temperature. All measurements are at the service valves and are based on 80db / 67wb indoor temperature

² Temperature of air entering outside coil.

³ Approach = Liquid Line Temperature minus Outdoor Ambient Temperature

⁴ Subcooling = Saturation Temperature minus Liquid Line Temperature

14ACX/XC14 CHARGING INFORMATION

FOR COMPLETE CHARGING DETAILS, REFER TO THE INSTALLATION AND SERVICE PROCEDURES MANUAL (Corp. 0638-L10) AVAILABLE ON DAVENET.

Capacity	-018	-024	-030	-036	-041	-042	-047	-048	-059	-060
	mal Operating	g Pressures ¹								
°F(°C) ²			TX	V System - Lic	quid Line (<u>+</u> 10	psig) / Suctio	n Line (<u>+</u> 5 ps	sig)		
65 (18)	228 / 133	232 / 137	224 / 137	235 / 138	233 / 142	231 / 140	233 / 139	238 / 136	239 / 133	239 / 133
75 (24)	264 / 135	265 / 141	260 / 140	274 / 140	256 / 143	269 / 142	272 / 141	277 / 139	278 / 136	278 / 136
85 (29)	311 / 144	308 / 143	304 / 142	319 / 142	299 / 145	312 / 144	315 / 142	320 / 139	323 / 138	323 / 138
95 (35)	360 / 147	357 / 145	353 / 145	367 / 144	343 / 146	360 / 145	361 / 144	369 / 141	370 / 140	370 / 140
105 (41)	414 / 148	407 / 147	405 / 147	420 / 147	389 / 148	414 / 148	413 / 145	422 / 144	415 / 143	415 / 143
115 (45)	472 / 151	463 / 150	461 / 150	478 / 149	452 / 151	471 / 150	465 / 148	481 / 148	476 / 147	476 / 147
°F(°C)²			RFC	System - Liqu	uid Line (<u>+</u> 10	psig) / Suction	on Line (<u>+</u> 5 p	sig)		
65 (18)	234 / 134	235 / 129	229 / 131	237 / 132	228 / 131	230 / 134	232 / 125	240 / 126	244 / 125	244 / 125
75 (24)	268 / 138	268 / 135	268 / 137	275 / 137	263 / 138	267 / 139	268 / 133	281 / 133	281 / 131	281 / 131
85 (29)	310 / 143	309 / 140	310 / 141	319 / 141	306 / 144	308 / 145	312 / 140	324 / 138	324 / 136	324 / 136
95 (35)	356 / 147	356 / 145	351 / 145	364 / 145	348 / 148	354 / 149	357 / 144	371 / 142	370 / 141	370 / 141
105 (41)	407 / 151	405 / 148	402 / 149	415 / 149	395 / 151	406 / 153	406 / 149	420 / 146	418 / 145	418 / 145
115 (46)	462 / 155	463 / 153	458 / 153	472 / 152	453 / 155	459 / 156	460 / 152	473 / 150	471 / 147	471 / 147
Table 14- App	roach (APP)	Values ³ -TXV	System - °F (°C	C) <u>+</u> 1°F (0.5°C	:)	1			11	
65 (18)	5 (2.8)	4 (2.2)	4 (2.2)	7 (3.9)	3 (1.7)	6 (3.3)	9 (5.0)	7 (3.9)	8 (4.4)	8 (4.4)
75 (24)	6 (3.3)	7 (3.9)	6 (3.3)	8 (4.4)	3 (1.7)	5 (2.8)	9 (5.0)	8 (4.4)	9 (5.0)	9 (5.0)
85 (29)	6 (3.3)	7 (3.9)	6 (3.3)	8 (4.4)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
95 (35)	6 (3.3)	6 (3.3)	6 (3.3)	7 (3.9)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
105 (41)	4 (2.2)	5 (2.8)	8 (4.4)	7 (3.9)	4 (2.2)	5 (2.8)	8 (4.4)	8 (4.4)	9 (5.0)	9 (5.0)
115 (45)	4 (2.2)	5 (2.8)	5 (2.8)	6 (3.3)	5 (2.8)	4 (2.2)	8 (4.4)	9 (5.0)	9 (5.0)	9 (5.0)
Table 15- Sub	cooling (SC)	Values ⁴ -TXV	System - °F (°0	C) <u>+</u> 1°F (0.5°C	;)		l .	l .	II.	
65 (18)	8 (4.4)	10 (5.6)	8 (4.4)	8 (4.4)	9 (5.0)	8 (4.4)	6 (3.3)	8 (4.4)	6 (3.3)	8 (4.4)
75 (24)	7 (3.9)	6 (3.3)	6 (3.3)	7 (3.9)	7 (3.9)	8 (4.4)	6 (3.3)	8 (4.4)	5 (2.8)	7 (3.9)
85 (29)	8 (4.4)	7 (3.9)	6 (3.3)	8 (4.4)	7 (3.9)	9 (5.0)	6 (3.3)	8 (4.4)	5 (2.8)	8 (4.4)
95 (35)	8 (4.4)	8 (4.4)	7 (3.9)	8 (4.4)	7 (3.9)	9 (5.0)	6 (3.3)	8 (4.4)	4 (2.2	7 (3.9)
105 (41)	10 (5.6)	8 (4.4)	7 (3.9)	9 (5.0)	7 (3.9)	10 (5.6)	6 (3.3)	8 (4.4)	4 (2.2)	6 (3.3)
115 (46)	11 (6.1)	8 (4.4)	7 (3.9)	9 (5.0)	6 (3.3)	10 (5.6)	5 (2.8)	7 (3.9)	3 (1.7)	6 (3.3)

¹ Typical pressures; indoor evaporator match-up, indoor air quantity and

AIRFLOW CHECK - Both airflow and refrigerant charge must be monitored for a Table 16. Evaporator Coil Delta-T proper system set-up. It may be necessary to alternately check and adjust the airflow and the refrigerant charge.

NOTE: Be sure that filters and indoor and outdoor coils are clean before testing. To determine temperature drop across indoor coil (Delta-T), measure the entering air dry bulb (DB) and wet bulb (WB) temperatures at the indoor coil. Find Delta-T in table 16. Measure coil's leaving air DB and subtract that value from entering air DB. The measured difference should be within +3°F (+1.8°C) of table value; if too low, decrease the indoor fan speed (refer to indoor unit for information). If the Delta-T is too high, increase the indoor fan speed. Repeat charging procedure and Delta-T (air flow adjustment) procedure until both are correct.

Example: assume entering air DB - 72, WB - 64, leaving DB - 53. Therefore, Delta-T Table 17. RFC Sizes should be 15 (per table); delta across coil is 72 - 53 or 19 (which is 4°F higher than table value); action necessary: increase fan speed.

Dry bulb temperature of air entering indoor coil (°F)

80 24 24 24 23 23 22 22 22 20 19 18 17 16 15 23 23 23 22 22 21 21 20 19 18 17 16 15 14 22 22 22 21 21 20 19 19 18 17 16 15 14 21 21 21 20 19 19 18 17 16 16 15 14 13 12 20 20 19 18 17 17 16 15 15 14 13 12 11 10 19 19 18 18 17 17 16 15 15 14 13 12 11 10 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[Wet bulb temperature of air entering indoor coil]

Capacity	-018	-024	-030	-036	-041	-042	-047	-048	-059	-060
RFC Size	0.053	0.060	0.067	0.071	TXV	0.083	TXV	0.083	TXV	0.093

Table 18. Superheat Value (RFC)* + 1°F (0.5°C)

	Outdoor Temp (°F)	65	` 70´	75	80	85	90	95	100	105
С	-018	21	21	21	20	19	18	16	13	10
Ă	-024	24	23	22	21	20	18	15	13	9
P	-030	22	20	19	17	15	13	12	10	6
C	-036	21	20	19	17	15	13	10	8	5
ĭ	-042	23	22	20	18	15	12	8	4	2
Ţ	-048	35	30	25	22	18	12	8	5	5
Y	-060	35	30	25	22	18	12	8	5	5

^{*}Suction line saturation temperature minus suction line temperature. All measurements are at the service valves and are based on 80db / 67wb indoor temperature.

evaporator load will cause the pressures to vary. ² Temperature of air entering outside coil.

³ Approach = Liquid Line Temperature minus Outdoor Ambient Temperature

⁴ Subcooling = Saturation Temperature minus Liquid Line Temperature