INSTALLATION INSTRUCTIONS FOR ENERGY RECOVERY SYSTEMS (ERS)
USED WITH ENERGENCE 072 SERIES UNITS

SHIPPING AND PACKING LIST

Package 1 of 1 contains: See Illustration 1 and 2.
1 - Energy Recovery System Assembly
1 - Outdoor Fresh Air Hood with Filter
1 - Outdoor Exhaust Hood with Barometric Damper
1 - Top Filler Panel
1 - Bottom Filler Panel w/ Platform Support Rail (Mounted)
2 - Side Filler (Installed on ERS)
1 - Hardware Bag:
 14' - Gasket ¾" x 1 ¼"
 7' - Gasket ¼" x ½"
 1 - Field Harness
 4 - Wire Ties
 10 - Self-Tapping Screws 10-16 x ½"
 8 - Gold Screws 10-16 x ½"
1 - Installation Instruction

PRINCIPLE OF OPERATION

The ERS enthalpy wheel contains parallel layers of a polymeric material that are impregnated with silica gel (desiccant). The wheel is located in the entering (intake) air and exhaust air streams of the ventilation equipment. As the wheel rotates through each air stream, the wheel surface adsorbs sensible and latent energy. In the heating mode, the wheel rotates to provide a constant transfer of heat from the exhaust air stream to the colder intake air stream. During the cooling season, the process is reversed. When the temperatures are mild the wheel pivots out of the air stream to allow economizer to operate normally for "free cooling" when outdoor temperature and humidity is acceptable. During economizer operation, the ERS exhaust blower continues to run, providing power exhaust for the system. The intake blower is de-energized during economizer operation.

WARNING

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a qualified installer or service agency.
CAUTION

Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

GENERAL

These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation.

REQUIREMENTS

When installed, the unit must be electrically wired and grounded in accordance with local codes or, in the absence of local codes, with the current National Electric Code, ANSI/NFPA No. 70.

SHIPPING DAMAGE

Check unit for shipping damage. Receiving party should contact last carrier immediately if shipping damage is found.

RIGGING UNIT FOR LIFTING

1. Maximum weight of unit is — 300 Lbs (crated).
2. Remove crating and retrieve hardware bag that is inside of ERS.
3. All ERS door panels must be in place for rigging.
4. Use straps to lift unit.

ROOFTOP UNIT PREPARATION

1. Disconnect all power to rooftop unit.
2. Open filter access door. If installing pivoting wheel verify and/or install an internal modulating economizer.
3. Remove the rooftop unit horizontal return air access panels. Also remove any hoods and/or power exhaust equipment. Discard hoods, power exhaust equipment, and horizontal return air panels. See Figure 1.

4. If a factory install ERS Harness (J298/P153) is installed go to Step 5, otherwise use the provided harness from the hardware bag within the ERS and complete the following steps.
 A. Locate the field harness from the hardware bag shipped inside the ERS.
 B. With door panels open on the economizer and control side of RTU, route the wire harness bare ends (3 wires Green, Pink and Black) from economizer section along the RTU wire at the top of unit and through panel above the filter rack. See Figure 2.
 C. Follow wires all the way through blower section. See Figure 3.
 D. Continue to follow wires along the top and through divider panel into the control center. See Figure 4.
E. Route wire through the control section down to the IMC2 control board. Strip the wire ends 3/8" if they have not been pre-done. Place the Green wire under screw terminal at J298-8 (Purple connector). Do the same routine for Pink at J298-10 and Black to J298-9. See Figure 5.

5. The economizer may use an A7 enthalpy sensor located on the division panel between the economizer outdoor air and return air dampers. If present, the sensor must be moved to the intake air section of the ERS. Disconnect sensor A7 wires from logic module, remove screws securing the sensor, and retain sensor assembly and screws. See Figure 6.

7. Install the provided ERS field harness between J4 and P4 by plugging P27 into J4, plugging J27 into P4 harness.
8. Plug purple and blue wires from ERS field harness into logic module at SO+ (purple) and SO (blue).
9. Plug field harness P27 into economizer plug J4. See Figure 7 for field wiring.

10. Using wire ties neatly route the wires to clear any moving parts.
11. Route the 6-pin connector P153 and wiring harness under the economizer and out the return air. Coil excess wire and route into return air of the rooftop unit. See Figure 8.

1. Apply ¾” x 1 ¼” gasket to top and bottom decks of ERS as shown in the figure. See Figure 9.
2. Attach bottom filler panel with platform support rail to bottom opening of rooftop unit aligning with screw holes used by removed door panel. Secure in place as shown in Figure 10.

3. Remove all screws holding the top panel of rooftop unit around the horizontal exhaust air opening. Ensure that the top panel will move upward at least 2”.

4. Lift ERS at least three feet (3’). Remove four screws holding telescoping leg to guide and pull out leg. Reinsert the leg from the bottom with the flat foot under the unit and reinsert one of the screws to hold leg into place. The leg will need to be adjusted later when unit is in position.

5. Position ERS in front of horizontal exhaust air opening. Line up the ERS to the rooftop unit. Ensure that there are not any screws on the rooftop unit that will interfere with the mounting flanges of the ERS and if so remove them.

Note: Equipment support kit or equivalent should be used under feet of standoff legs to prevent roof penetration. See Figure 11.

6. Lift ERS front end into the platform support rail catching the base pan of ERS.

7. Remove the screws placed in the telescoping legs and adjust the legs on the ERS until it is level. Replace all four screws in each leg to secure the ERS in the leveled position. See Figure 11.

8. Insert top filler panel under the rooftop unit top panel with 1” flange pointing out away from unit and on top of ERS top panel to provide a rain seal. See Figure 12.

9. Use provided 10-16 x ½” self-tapping screws to secure the ERS to the rooftop unit. See Figure 12.

10. Check and seal, if necessary, along the edges where the ERS meets the rooftop unit to ensure there is no air leakage. Final assembly should resemble Figure 13.

11. Remove the right front (rooftop unit side) access panel and locate the field wiring harness that was previously routed into the return air of the rooftop unit. Plug the field wiring harness into the connector located at the bottom of the access door inside the ERS. See Figure 14.

12. Locate the A7 enthalpy control sensor (if removed earlier from the rooftop unit.)

13. Installations using an A7 enthalpy sensor - Remove the screws to the filter access panel of the fresh air hood on the ERS and remove the air filter. Reinstall the
A7 enthalpy control sensor with retained screws removed on the bottom panel of the fresh air intake hood. See Figure 15.

Figure 15

14. If the A7 enthalpy sensor was retained, locate the blue and purple wire harness on the top deck. Remove the intake air access panel and route blue and purple harness to the A7 enthalpy sensor harness and connect purple to SO+ and blue to SO. Secure excess wiring. See Figure 16 and Figure 17 for field wiring diagram.

Figure 16

Figure 17

15. All electrical connections must conform to any local codes and the current National Electric Codes (NEC) and Canadian Electric Code (CEC). Refer closely to wiring diagram in unit and/or in these instructions for proper connections. Refer to the unit nameplate for the minimum circuit ampacity and maximum over current protection size. Electrical data is listed on unit rating plate and motor nameplates.

16. Connect line voltage power to ERS unit from ERS field provided or rooftop unit disconnect switch (disconnect must be properly sized). Then connect line voltage from disconnect switch through ERS knockout on middle post to control box per the wiring diagram. See Figure 18 and 19.

Figure 18

Figure 19

Note: Unit voltage entries must be sealed weather tight after wiring is complete.

18. Replace access panels onto the ERS unit and secure.

ROOFTOP UNIT WIRING
(See Field Wiring Diagram)

1. Open access panel to rooftop unit controls.
2. The minimum damper blade position must be adjusted on the economizer control board to the correct amount of outside air specified by the customer. Refer to Lennox rooftop unit manual for setting.

Wheel Pivot Adjustment

The Electronic Configuration To Order (ECTO) parameter must be set at ECTO 7.22 = 10 to indicate ERS is installed.

In the A55 Integrated Modular Controller II (IMC2) [Prodigy] of the RTU setting is required for the economizer to go to minimum outside air.
During default operation the ERS will start when the RTU unit blower is on and dampers are at minimum position. The wheel will pivot out of the fresh air stream at power exhaust signal or free-cooling demand.

The A55 (IMC2) uses the following parameters to control wheel position. See Figure 20.

For Smoke Mode reference the Smoke Mode Operation table.

<table>
<thead>
<tr>
<th>Smoke Mode Setting (ECTO 5.01)</th>
<th>Blower</th>
<th>D02</th>
<th>Damper</th>
<th>D01</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. unit off (default)</td>
<td>OFF</td>
<td>OFF</td>
<td>Closed</td>
<td>OFF</td>
</tr>
<tr>
<td>1. pos. pressure</td>
<td>ON</td>
<td>OFF</td>
<td>100% Open</td>
<td>ON</td>
</tr>
<tr>
<td>2. neg. pressure</td>
<td>ON</td>
<td>ON</td>
<td>Closed</td>
<td>ON</td>
</tr>
<tr>
<td>3. purge</td>
<td>ON</td>
<td>ON</td>
<td>100% Open</td>
<td>ON</td>
</tr>
<tr>
<td>4. neg. pressure</td>
<td>OFF</td>
<td>ON</td>
<td>100% Open</td>
<td>ON</td>
</tr>
<tr>
<td>5. neg. pressure</td>
<td>ON</td>
<td>ON</td>
<td>Closed</td>
<td>ON</td>
</tr>
<tr>
<td>6. purge</td>
<td>ON</td>
<td>ON</td>
<td>100% Open</td>
<td>ON</td>
</tr>
<tr>
<td>7. neg. pressure</td>
<td>OFF</td>
<td>ON</td>
<td>Closed</td>
<td>ON</td>
</tr>
</tbody>
</table>

Notes:
1. D01 (turns on B28, B26, B27 thru ERS controller) and D02 (turns on B29 thru ERS controller) are relay outputs from Lennox IMC2 control board.

Optional Kits (Factory Installed)

Motorized Intake Air Damper

Damper mounts behind the outdoor air intake hood. It opens when the ERS is energized and closes when de-energized. Powered by B30 damper motor.

Pressure Sensor

Measurement device on the ERS to determine airflow across the Enthalpy Wheel.

Low Ambient Control Kit (S26)

Prevents frost formation on energy wheel heat transfer surfaces by terminating the intake blower operation when discharge air temperature falls below a field selectable temperature setting. Intake blower operation resumes operation after temperature rises above the adjustable temperature differential.

The frost threshold is the outdoor temperature at which frost will begin to form on the ERS wheel. For energy recovery systems, the frost threshold is typically below 10°F. Frost threshold is dependent on indoor temperature and humidity. The table shows how the frost threshold temperatures vary depending on indoor conditions.

<table>
<thead>
<tr>
<th>Indoor RH at 70°F</th>
<th>Frost Threshold Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>0°F</td>
</tr>
<tr>
<td>30%</td>
<td>5°F</td>
</tr>
<tr>
<td>40%</td>
<td>10°F</td>
</tr>
</tbody>
</table>

Because Energy Recovery Systems have a low frost threshold, frost control options are not necessary in many climates. Where outdoor temperatures may drop below the frost threshold during the ERS operational hours, exhaust only frost control option is available.

Economizer Settings

Refer to economizer instructions for minimum air flow requirement. The damper setting on the internal economizer assembly are field adjustable to any position above minimum air flow for fresh air requirements at the customers specified conditions.

Blower Speed Adjustment

Blower speed selection is accomplished by changing the speed tap wire (refer to wiring diagram) on both fresh air and exhaust air blowers. All blowers are factory set at "high" for maximum airflow. To determine air flow setting, external static pressure readings will be read across the ERS. Reference Table 1 on page 8. For location to take pressure readings. See Figure 21.

3. Close access panels on the rooftop unit and secure.
4. Restore power to unit.
5. Once ERS is working properly, caulk any open joints, holes, or seams to make the units completely air and water tight.
6. Leave this instruction manual with owner or in an envelope to be kept near unit.
OPERATION

Recovery Wheel Mode
On a thermostat call for blower operation in heating, cooling or continuous blower, the ERS media will rotate between fresh air and exhaust air streams. Both the fresh air blower and exhaust air blower will be operating.

Economizer/Power Exhaust Mode
On the activation of the economizer mode (closure of EH and EH1 of logic module), the ERS unit will shutdown for approximately 60 seconds to allow the ERS media to pivot out of the air stream. After this delay timer has been satisfied, the exhaust air blower will operate. The ERS unit will act as a power exhaust unit.

This mode will continue until economizer has been deactivated. The exhaust air blower will shut down and the delay timer will be activated. During this time period the ERS media will pivot back into the air stream. When timing is complete the unit will operate in the Recovery Wheel Mode.

Then if economizer continues to close the ERS will shutdown when the “N” terminal is deactivated, thus allowing rooftop unit to run in night set back mode.

SYSTEM CHECK

1. Disconnect ERS main power.

Note: If Low ambient kit S26 is used the jumper between TB37-5 and TB37-6 should be removed. Also if system check out is being conducted at low ambient temperatures, jumper low ambient switch.

2. Open rooftop unit blower access panel and locate TB1. Jumper terminals 6 (24v) and 3 (G) to energize rooftop unit blower. Refer to manufacturers instructions when an electronic thermostat or other energy management system is used.

3. Remove ERS control access panel and install jumper at low voltage terminal strip between TB37-1 and TB37-2.

4. Restore power to ERS unit. The recovery wheel will pivot out of the air stream, fresh air blower dampers will open, and after a delay, the exhaust blower will operate.

5. Remove jumper from ERS control board TB37-1 and TB37-2. The recovery wheel will pivot into the air stream, the fresh air blower dampers will close, and after a delay, the fresh air blower and exhaust air blower will operate.

6. Disconnect main power to unit before making adjustment to economizer and/or ERS unit.

7. Remove all jumpers and replace ERS control access cover.

8. Set thermostat to normal operating position.

9. Restore power to unit.

MAINTENANCE

Motor Maintenance
All motors use prelubricated sealed bearings; no further lubrication is necessary.

Mechanical Inspection
Make visual inspection of dampers, linkage assemblies and ERS rotating bearings during routine maintenance. Filters should be checked periodically and cleaned when necessary. Filter is located in fresh air hoods. DO NOT replace permanent filters with throwaway type filters.

Energy Wheel Maintenance
Four pie-shaped energy recovery wheel segments are seated on stops between the stainless steel spring retainers, secured to the hub and rim of wheel. Annual inspection of the self cleaning wheel is recommended. With power disconnected, remove ERS access panels (rear) and unplug (J150 & P150). Refer to wiring diagram in this instruction manual. Each segment is secured in place by a stainless steel spring retainer located on wheel rim. Remove one end of the stainless steel spring retainer from the slot in the wheel rim and remove. Do the same on the next retainer. Remove segment and wash with water and/or mild detergent. Replace segment by reversing the above procedure. See Figure 22. Discoloration and staining of ERS segment does not affect its performance. Only excessive buildup of foreign material need be removed. If the segment appears excessively dirty, it should be cleaned to ensure maximum operating efficiency. Thoroughly spray plastic surface with household cleaner such as Fantastic® or equivalent middle detergent and gently rinse with warm water using a soft brush to remove heavier accumulation. Shake excess water from segment and replace in reverse of removal instructions.
ENERGY RECOVERY SYSTEMS

SCFM vs. PRESSURE DROP

Equation of line: \(\text{SCFM} = \frac{\text{PD} - 0.0492647}{0.0005721} \)

Table #1

<table>
<thead>
<tr>
<th>Pressure Drop (in. of W.C.)</th>
<th>SCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>900</td>
</tr>
<tr>
<td>0.2</td>
<td>950</td>
</tr>
<tr>
<td>0.4</td>
<td>1000</td>
</tr>
<tr>
<td>0.6</td>
<td>1050</td>
</tr>
<tr>
<td>0.8</td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td>1150</td>
</tr>
<tr>
<td>1.2</td>
<td>1200</td>
</tr>
<tr>
<td>1.4</td>
<td>1250</td>
</tr>
<tr>
<td>1.6</td>
<td>1300</td>
</tr>
</tbody>
</table>

Equation of line: \(\text{SCFM} = (\text{PD} - 0.0492647) / 0.0005721 \)
NOTE - IF ANY WIRE IN THIS APPLIANCE IS REPLACED IT MUST BE REPLACED WITH WIRE OF LIKE SIZE, RATING, TERMINATION AND INSULATION THICKNESS.

WARNING - ELECTRIC SHOCK HAZARD, CAN CAUSE INJURY OR DEATH. UNIT MUST BE GROUNDED IN ACCORDANCE WITH NATIONAL AND LOCAL CODES.

ALL POWER BEFORE SERVICING.

NOTE - FOR USE WITH COPPER CONDUCTOR ONLY REFER TO UNIT RATING PLATE FOR MINIMUM CIRCUIT AMPACITY AND MAXIMUM OVERCURRENT PROTECTION SIZE.

REMOVE JUMPER TO INSTALL FIELD OPTIONAL LOW AMBIENT SWITCH.

STEP DOWN TRANSFORMER ASSEMBLY FOR 480 AND 600 VOLT UNITS ONLY.

V (380-420 50-60 Hz) VOLTAGE HOOK UP.

NOTE - ALL REMAINING WIRE FACTORY INSTALLED.

ACCESSORIES

PIVOTING ENERGY RECOVERY WHEEL FOR ENERGENCE AND LANDMARK G, J, M, Y VOLTAGE UNITS

SECTION F

REV. 1.0

Supersedes

New Form No.

537331-01

© 2009 Lennox Commercial
KEY
A7 SENSOR, SOLID STATE ENTHALPY
A130 CONTROL, ERS
A55 CONTROL, MAIN PANEL LENNOX
A62 SENSOR, ENTHALPY INDOOR
A72 CONTROL, REMOTE MIN POS (OPT)
B7 MOTOR, DAMPER ECONOMIZER
B43 MOTOR, EXHAUST DAMPER
J3 JACK, UNIT ECONOMIZER
J104 JACK, SENSOR OUTDOOR ENTHALPY
J105 JACK, SENSOR RETURN AIR ENTHALPY
J153 JACK, ENTHALPY / DAMPER MOTOR
J193 JACK, ENTHALPY SENSOR
J298A JACK, IAC INTERFACE
J262A JACK, DAMPER MOTOR
J262B JACK, ENTHALPY SENSORS
P3 PLUG, ECONOMIZER BYPASS
P153 PLUG, ENTHALPY / DAMPER MOTOR
P193 PLUG, ENTHALPY SENSOR
P282 PLUG, ECONOMIZER OUTPUT
S118 THERMOSTAT, DESICANT DEFROST
S174 SWITCH, EXHAUST DAMPER

DETERMINE A7 AND A62 (IF USED) FOR EITHER GLOBAL ENTHALPY OR SENSIBLE TEMPERATURE CONTROL FOR UNIT DIFFERENTIAL ENTHALPY CONTROL, ADD A62 RETURN AIR ENTHALPY SENSOR
OPTIONAL EXHAUST DAMPER ACTUATOR TO HOLD EXHAUST DAMPER CLOSED WHEN OUTSIDE AIR DAMPER IS CLOSED
S118 USED ON 35 TO 50 TON ENERGENCE UNITS WITH ENERGY RECOVERY WHEEL (ERW)
REPOSITION A7 ENTHALPY SENSOR FROM ROOFTOP UNIT ECONOMIZER INTO INTAKE HOOD OF THE ERW ROOFTOP UNIT
REMOVE JUMPER WHEN INSTALLING OPTIONAL LOW AMBIENT SWITCH

NOTE- THIS DIAGRAM USES ONLY WHEN ECONOMIZER OR MOTORIZED OUTDOOR AIR DAMPERS ARE INSTALLED.

ENERGENCE SERIES ECONOMIZER AND MOTORIZED OAD PIVOTING WHEEL ENERGY RECOVERY SYSTEM OPTION
SECTION D

WIRING DIAGRAM 09/09

ACCESSORIES

LENNOX COMMERCIAL
<table>
<thead>
<tr>
<th>Lennox Model No.</th>
<th>Req'd Curb Height</th>
<th>CFM Range</th>
<th>Voltage</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>50P2050xH23</td>
<td>14"</td>
<td>1000-1700</td>
<td>208-230</td>
<td>3</td>
</tr>
<tr>
<td>50P2050xH33</td>
<td>14"</td>
<td>1000-1700</td>
<td>460</td>
<td>3</td>
</tr>
<tr>
<td>50P2050xH43</td>
<td>14"</td>
<td>1000-1700</td>
<td>575</td>
<td>3</td>
</tr>
</tbody>
</table>

ERS Layout

- Clearance 24"
- Clearance 42"
- Clearance 40"
- Equipment Support: 012104808
- Roof Curb: 502014414
START UP INFORMATION SHEET

VOLTAGE - ERS UNIT

<table>
<thead>
<tr>
<th>Voltage</th>
<th>L1-L2</th>
<th>L1-L3</th>
<th>L2-L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Voltage</td>
<td>C (black) to G (green) Volts*</td>
<td></td>
<td>C (black) to W (white) Volts*</td>
</tr>
</tbody>
</table>

* With thermostat calling.

AMPERAGE - ERS MOTORS

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Nominal HP</th>
<th>Rated Amps</th>
<th>Running Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust Motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel Motor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRFLOW

<table>
<thead>
<tr>
<th>CFM</th>
<th>Pressure Drop</th>
<th>Calculated CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Design CFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust Design CFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Return Air</th>
<th>Tempered Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amb. db Temp</td>
<td>db Temp*</td>
<td>db Temp*</td>
</tr>
<tr>
<td>Amb. wb Temp</td>
<td>wb Temp*</td>
<td>wb Temp*</td>
</tr>
</tbody>
</table>

* Measure after 15 minutes of run time

INSTALLATION CHECK LIST

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model #</td>
<td>Serial #</td>
</tr>
<tr>
<td>Owner</td>
<td></td>
</tr>
<tr>
<td>Owner Address</td>
<td></td>
</tr>
<tr>
<td>Installing Contractor</td>
<td>Start Up Mechanic</td>
</tr>
</tbody>
</table>

- Inspect the unit for transit damage and report any damage on the carrier’s freight bill.
- Check model number to insure it matches the job requirements.
- Install field accessories and unit adapter panels as required. Follow accessory and unit installation manuals.
- Verify field wiring, including the wiring to any accessories.
- Check all multi-tap transformers, to insure they are set to the proper incoming voltage.
- Verify correct belt tension, as well as the belt/pulley alignment. Tighten if needed.
- Prior to energizing the unit, inspect all the electrical connections.
- Power the unit. Bump the motor contactor to check rotation. Three phase motors are synchronized at the factory. If blower motor fans are running backwards, de-energize power to the unit, then swap two of the three incoming electrical lines to obtain proper phasing. Re-check.
- Perform all start up procedures outlined in the installation manual shipped with the unit.
- Fill in the Start Up Information as outlined on the opposite side of this sheet.
- Provide owner with information packet. Explain the thermostat and unit operation.