WARNING

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a qualified installer or service agency.

PRINCIPLE OF OPERATION

The ERS enthalpy wheel contains parallel layers of a polymeric material that are impregnated with silica gel (desiccant). The wheel is located in the entering (intake) air and exhaust air streams of the ventilation equipment. As the wheel rotates through each air stream, the wheel surface adsorbs sensible and latent energy. In the heating mode, the wheel rotates to provide a constant transfer of heat from the exhaust air stream to the colder intake air stream. During the cooling season, the process is reversed. When the temperatures are mild the wheel pivots out of the air stream to allow economizer to operate normally for "free cooling" when outdoor temperature and humidity is acceptable. During economizer operation, the ERS exhaust blower continues to run, providing power exhaust for the system. The intake blower is de-energized during economizer operation.
These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation.

When installed, the unit must be electrically wired and grounded in accordance with local codes or, in the absence of local codes, with the current National Electric Code, ANSI/NFPA No. 70.

Check unit for shipping damage. Receiving party should contact last carrier immediately if shipping damage is found.

1. Maximum weight of unit is — 1150 Lbs (crated).
2. Remove crating and retrieve hardware bag that is inside of ERS.
3. All ERS door panels must be in place for rigging.
4. Use straps to lift unit.

4. Drill 7/8” hole in divider panel. Insert 7/8” bushing into hole before installing ERS harness. See Figures 2 and 3.

5. If a factory install ERS Harness (J298/P153) is installed go to Step 6, otherwise use the provided harness from the hardware bag within the ERS and complete the following steps.

 A. Locate the field harness from the hardware bag shipped inside the ERS.
 B. With door panels open on the economizer and control side of RTU, route the wire harness bare ends (3 wires Green, Pink and Black) from economizer section along the RTU wire at the top of unit and through panel above the filter rack.
 C. Follow wires all the way through blower section.
 D. Route wire through the control section down to the IMC2 control board. Strip the wire ends 3/8" if they have not been pre-done. Place the Green wire under screw terminal at J298-8 (Purple connector). Do the same routine for Pink at J298-10 and Black to J298-9. See Figure 4.
6. The economizer may use an A7 enthalpy sensor located on the division panel between the economizer outdoor air and return air dampers. If present, the sensor must be moved to the intake air section of the ERS. Disconnect sensor A7 wires from logic module, remove screws securing the sensor, and retain sensor assembly and screws. See Figure 5.

7. Using wire ties neatly route the wires to clear any moving parts.

8. Route the 6-pin connector P153 and wiring harness under the economizer and out the return air. Coil excess wire and route into return air of the rooftop unit. See Figure 6.

2. Attach bottom filler panel with platform support rail to bottom opening of rooftop unit aligning with screw holes used by removed door panel. Secure in place as shown in Figure 8.

3. Remove all screws holding the top panel of rooftop unit around the horizontal exhaust air opening. Ensure that the top and upper most return air opening panel will move upward at least 2".

4. Lift ERS at least three feet (3’). Remove four screws holding telescoping leg to guide and pull out leg. Reinsert the leg from the bottom with the flat foot under the unit and reinsert one of the screws to hold leg into place. The leg will need to be adjusted later when unit is in position.

5. Position ERS in front of horizontal exhaust air opening. Line up the ERS to the rooftop unit. Ensure that there are not any screws on the rooftop unit that will interfere with the mounting flanges of the ERS and if so remove them. Apply 1/8" x 1/2" gasket around perimeter to ensure seal to ERS.

6. Apply 3/4" x 1 1/4" gasket to top and bottom decks of ERS as shown in the figure. See Figure 7.

7. Remove the screws placed in the telescoping legs and adjust the legs on the ERS until it is level. Then replace all four screws in each leg to secure the ERS in the leveled position. See Figure 9.

Note: Equipment support kit or equivalent should be used to under feet of standoff legs to prevent roof penetration. See Figure 9.

INSTALL ENERGY RECOVERY SYSTEM

1. Apply 3/4" x 1 1/4" gasket to top and bottom decks of ERS as shown in the figure. See Figure 7.

2. Attach bottom filler panel with platform support rail to bottom opening of rooftop unit aligning with screw holes used by removed door panel. Secure in place as shown in Figure 8.

3. Remove all screws holding the top panel of rooftop unit around the horizontal exhaust air opening. Ensure that the top and upper most return air opening panel will move upward at least 2".

4. Lift ERS at least three feet (3’). Remove four screws holding telescoping leg to guide and pull out leg. Reinsert the leg from the bottom with the flat foot under the unit and reinsert one of the screws to hold leg into place. The leg will need to be adjusted later when unit is in position.

5. Position ERS in front of horizontal exhaust air opening. Line up the ERS to the rooftop unit. Ensure that there are not any screws on the rooftop unit that will interfere with the mounting flanges of the ERS and if so remove them. Apply 1/8" x 1/2" gasket around perimeter to ensure seal to ERS.

Note: Equipment support kit or equivalent should be used to under feet of standoff legs to prevent roof penetration. See Figure 9.

6. Lower ERS so that the straight flange closest to the filter access door lines up to side of rooftop unit. The top flange should tuck under the rooftop unit. The opposite side flange should fit just inside of the duct opening panel. Secure it to rooftop unit with 10-16 x 1/2" self-tapping screws (provided).

7. Remove the screws placed in the telescoping legs and adjust the legs on the ERS until it is level. Then replace all four screws in each leg to secure the ERS in the leveled position. See Figure 9.
8. Use provided 10-16 x ½" self-tapping screws to secure the side mounting flanges of the ERS to the rooftop unit.

9. Check and seal, if necessary, along the edges where the ERS meets the rooftop unit to ensure there is no air leakage. Final assembly should resemble Figure 10.

10. Remove the control access panel and locate the 6-pin connector P153 wiring harness that was previously routed into the return air of the rooftop unit. Plug the harness connector P153 into the connector J153 located at the bottom of the access door inside the ERS. See Figure 11 and Figure 12.

11. Installations using an A7 enthalpy sensor - Remove the screws to the filter access panel of the fresh air hood on the ERS and remove the air filter. Reinstall the A7 enthalpy control sensor with retained screws removed on the bottom panel of the fresh air intake hood. See Figure 13.

12. If the A7 enthalpy sensor was retained, locate the blue and purple wire harness on the top deck. Remove the intake air access panel and route blue and purple harness to the A7 enthalpy sensor harness and connect purple to SO+ and blue to SO. Secure excess wiring. See Figure 14.

13. All electrical connections must conform to any local codes and the current National Electric Codes (NEC) and Canadian Electric Code (CEC). Refer closely to wiring diagram in unit and/or in these instructions for proper connections. Refer to the unit nameplate for the minimum circuit ampacity and maximum over current protection size. Electrical data is listed on unit rating plate and motor nameplates.

14. Connect line voltage power to ERS unit from ERS field provided or rooftop unit disconnect switch (disconnect must be properly sized). Then connect line voltage from disconnect switch through ERS knockout on middle post to control box per the wiring diagram. See Figure 15 and 16.
15. Ground unit with a suitable ground connection either through unit supply wiring or earth ground.

Note: Unit voltage entries must be sealed weather tight after wiring is complete.

16. Replace access panels onto the ERS unit and secure.

ROOFTOP UNIT WIRING

(See Field Wiring Diagram)

1. Open access panel to rooftop unit controls.
2. The minimum damper blade position must be adjusted on the economizer control board to the correct amount of outside air specified by the customer. Refer to Lennox rooftop unit manual for setting.

Wheel Pivot Adjustment

The Electronic Configuration To Order (ECTO) parameter must be set at ECTO 7.22 = 10 to indicate ERS is installed.

In the A55 Integrated Modular Controller II (IMC2) [Prodigy] of the RTU setting is required for the economizer to go to minimum outside air.

During default operation the ERS will start when the RTU unit blower is on and dampers are at minimum position. The wheel will pivot out of the fresh air stream at power exhaust signal or free-cooling demand.

The A55 (IMC2) uses the following parameters to control wheel position. See Figure 17.

For Smoke Mode reference the Smoke Mode Operation table.

Normal Operation

```
<table>
<thead>
<tr>
<th>Event</th>
<th>Blower</th>
<th>D02</th>
<th>Damper</th>
<th>D01</th>
</tr>
</thead>
<tbody>
<tr>
<td>At startup, if ECTO 7.22 = 10 (ERS Installed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blow on A Lennox econ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D01 = 1, D02 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Exhaust on OR Free-Cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERS on D01 = 1, D02 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERS on D01 = 1, D02 = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Notes:
1. D01 (turns on B28, B26, B27 thru ERS controller) and D02 (turns on B29 thru ERS controller) are relay outputs from Lennox IMC2 control board.

3. Close access panels on the rooftop unit and secure.
4. Restore power to unit.
5. Once ERS is working properly, caulk any open joints, holes, or seams to make the units completely air and water tight.
6. Leave this instruction manual with owner or in an envelope to be kept near unit.
OPTIONAL KITS (Factory Installed)

Motorized Intake Air Damper
Damper mounts behind the outdoor air intake hood. It opens when the ERS is energized and closes when de-energized. Powered by B30 damper motor.

Pressure Sensor
Measurement device on the ERS to determine airflow across the Enthalpy Wheel.

Low Ambient Control Kit (S26)
Prevents frost formation on energy wheel heat transfer surfaces by terminating the intake blower operation when discharge air temperature falls below a field selectable temperature setting. Intake blower operation resumes operation after temperature rises above the adjustable temperature differential.

The frost threshold is the outdoor temperature at which frost will begin to form on the ERS wheel. For energy recovery systems, the frost threshold is typically below 10°F. Frost threshold is dependent on indoor temperature and humidity. The table shows how the frost threshold temperatures vary depending on indoor conditions.

<table>
<thead>
<tr>
<th>INDOOR RH AT 70°F</th>
<th>FROST THRESHOLD TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>0°F</td>
</tr>
<tr>
<td>30%</td>
<td>5°F</td>
</tr>
<tr>
<td>40%</td>
<td>10°F</td>
</tr>
</tbody>
</table>

Because Energy Recovery Systems have a low frost threshold, frost control options are not necessary in many climates. Where outdoor temperatures may drop below the frost threshold during the ERS operational hours, exhaust only frost control option is available.

ECONOMIZER SETTINGS

Refer to economizer instructions for minimum air flow requirement. The damper setting on the internal economizer assembly is field adjustable to any position above minimum air flow for fresh air requirements at the customers specified conditions.

BLOWER SPEED ADJUSTMENT

Blower speed selection is accomplished by adjusting the motor sheave on both fresh air and exhaust air blowers. All blowers are factory set in closed position for maximum airflow. To determine air flow setting, external static pressure readings will need to be read across the ERS. Reference Table 1 on Page 8. For location to take pressure readings. See Figure 18.

OPERATION

Recovery Wheel Mode
On a thermostat call for blower operation in heating, cooling or continuous blower, the ERS media will rotate between fresh air and exhaust air streams. Both the fresh air blower and exhaust air blower will be operating.

Economizer/Power Exhaust Mode
On the activation of the economizer mode (closure of EH and EH1 of logic module), the ERS unit will shutdown for approximately 60 seconds to allow the ERS media to pivot out of the air stream. After this delay timer has been satisfied, the exhaust air blower will operate. The ERS unit will act as a power exhaust unit.

This mode will continue until economizer has been deactivated. The exhaust air blower will shut down and the delay timer will be activated. During this time period the ERS media will pivot back into the air stream. When timing is complete the unit will operate in the Recovery Wheel Mode.

Then if economizer continues to close the ERS will shutdown when the "N" terminal is deactivated, thus allowing rooftop unit to run in night set back mode.

SYSTEM CHECK

1. Disconnect ERS main power.

 Note: If Low ambient kit S26 is used the jumper between TB37-5 and TB37-6 should be removed. Also if system check out is being conducted at low ambient temperatures, jumper low ambient switch.

2. Open rooftop unit blower access panel and locate TB1. Jumper terminals 6 (24v) and 3 (G) to energize rooftop unit blower. Refer to manufacturers instructions when an electronic thermostat or other energy management system is used.

3. Remove ERS control access panel and install jumper at low voltage terminal strip between TB37-1 and TB37-2.

4. Restore power to ERS unit. The recovery wheel will pivot out of the air stream, fresh air dampers will open, and after a delay, the exhaust blower will operate.

5. Remove jumper from ERS control board TB37-1 and TB37-2. The recovery wheel will pivot into the air stream, the fresh air dampers will close, and after a delay, the fresh air blower and exhaust air blower will operate.
6. Verify that the ERS (3) three phase blower motors are phased sequentially ensuring correct rotation and operation.
 a.) Disconnect power.
 b.) Reverse any two field power leads to the ERS.
 c.) Reapply power.
7. Disconnect main power to unit before making adjustment to economizer and/or ERS unit.
8. Remove all jumpers and replace ERS control access cover.
9. Set thermostat to normal operating position.
10. Restore power to unit.

MAINTENANCE

Motor Maintenance
All motors use prelubricated sealed bearings; no further lubrication is necessary.

Mechanical Inspection
Make visual inspection of dampers, linkage assemblies and ERS rotating bearings during routine maintenance. Filters should be checked periodically and cleaned when necessary. Filter is located in fresh air hoods. DO NOT replace permanent filters with throwaway type filters.

Belt Alignment
Proper alignment is essential to maintain long V-Belt life. Belt alignment should be checked every time belt maintenance is performed, each time the belt is replaced, and whenever sheaves are removed or installed.

Belt Installation
Always move the drive unit forward so the belt can be easily slipped into the groove without forcing them. Never force the belt into a sheave with a screw driver or wedge. You will damage the fabric and break the cords. It is recommended that the pulley center distances be offset by \(\frac{3}{4} \text{"} \) for proper length. This will allow the motor assembly to slide forward to remove belt and backward for belt tension.

Belt Tension
Measure the span length (center distance between pulleys when belt is snug). Mark center of span, then apply a force (6 to 9 Lbs on new belts) perpendicular to the span large enough to deflect the belt \(\frac{3}{4} \text{"} \) for every inch in span length.

Energy Wheel Maintenance
Eight pie-shaped ERS segments, are seated on stops between the segment retainer which pivots on the wheel rim and secured to the hub and rim of wheel. Annual inspection of the self cleaning wheel is recommended. With power disconnected, remove ERS access panels (rear) and unplug [J150 and P150] (Refer to wiring diagrams in this instruction manual). Remove segment and wash with water and/or mild detergent.

To install wheel segments follow steps A through E. See Figure 19. Reverse procedure for segment removal.

 A. Unlock two segment retainers (one on each side of the selected segment opening).
 B. With the embedded stiffener facing the motor side, insert the nose of the segment between the hub plates.

C. Holding segment by the two outer corners, press the segment towards the center of the wheel and inwards against the spoke flanges. If hand pressure does not fully seat the segment, insert the flat tip of a screw driver between the wheel rim and outer corners of the segment and apply downward force while guiding the segment into place.

D. Close and latch each segment retainer under segment retaining catch.

E. Slowly rotate the wheel 180°. Install the second segment opposite the first for counterbalance. Rotate the two installed segment 90° to balance the wheel while the third segment is installed. Rotate the wheel 180° again to install the fourth segment. Repeat this sequence with the remaining four segments.

![Figure 19](image)
ENERGY RECOVERY SYSTEM

SCFM vs. PRESSURE DROP

Equation of line: SCFM = (PD + 0.01) / 0.0003

TABLE #1

<table>
<thead>
<tr>
<th>SCFM</th>
<th>PRESSURE DROP (in. of W.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800</td>
<td>1.55</td>
</tr>
<tr>
<td>3000</td>
<td>1.62</td>
</tr>
<tr>
<td>3200</td>
<td>1.48</td>
</tr>
<tr>
<td>3400</td>
<td>1.41</td>
</tr>
<tr>
<td>3600</td>
<td>1.34</td>
</tr>
<tr>
<td>2800</td>
<td>1.23</td>
</tr>
<tr>
<td>3000</td>
<td>1.18</td>
</tr>
<tr>
<td>3200</td>
<td>1.12</td>
</tr>
<tr>
<td>3400</td>
<td>1.04</td>
</tr>
<tr>
<td>3600</td>
<td>1.07</td>
</tr>
<tr>
<td>2800</td>
<td>0.90</td>
</tr>
<tr>
<td>3000</td>
<td>0.88</td>
</tr>
<tr>
<td>3200</td>
<td>0.95</td>
</tr>
<tr>
<td>3400</td>
<td>0.84</td>
</tr>
<tr>
<td>3600</td>
<td>0.92</td>
</tr>
<tr>
<td>2800</td>
<td>0.88</td>
</tr>
<tr>
<td>3000</td>
<td>0.75</td>
</tr>
<tr>
<td>3200</td>
<td>0.66</td>
</tr>
<tr>
<td>3400</td>
<td>0.50</td>
</tr>
<tr>
<td>3600</td>
<td>0.50</td>
</tr>
</tbody>
</table>

50P3651xH Series
NOTE - IF ANY WIRE IN THIS APPLIANCE IS REPLACED IT MUST BE REPLACED WITH WIRE OF LIKE SIZE, RATING, TERMINATION AND INSULATION THICKNESS.

WARNING - ELECTRIC SHOCK HAZARD, CAN CAUSE INJURY OR DEATH. UNIT MUST BE GROUNDED IN ACCORDANCE WITH NATIONAL AND LOCAL CODES DISCONNECT ALL POWER BEFORE SERVICING.

NOTE - FOR USE WITH COPPER CONDUCTOR ONLY REFER TO UNIT RATING PLATE FOR MINIMUM CIRCUIT AMMENITY AND MAXIMUM OVERCURRENT PROTECTION SIZE.

REMOVE JUMPER TO INSTALL FIELD OPTIONAL LOW AMBIENT SWITCH.

STEP DOWN TRANSFORMER ASSEMBLY FOR 480 AND 600 VOLT UNITS ONLY.

M (380-420 50 Hz 3 phase) VOLTAGE HOOK UP.

L1 AND L2 USED ON HIGHER CFM UNITS.

NOTE - ALL REMAINING WIRES FACTORY INSTALLED.

ACCESSORIES

PIVOTING ENERGY RECOVERY WHEEL FOR ENERGENCE AND LANDMARK G, J, M, Y VOLTAGE UNITS.

SECTION F

REV. 1.0

Supersedes

New Form No.

© 2009 Lennox Commercial
DELETE A7 AND A62 (IF USED) FOR EITHER GLOBAL ENTHALPY OR SENSIBLE TEMPERATURE CONTROL.
ADD A62 RETURN AIR ENTHALPY SENSOR.
OPTIONAL EXHAUST DAMPER ACTUATOR TO HOLD EXHAUST DAMPER CLOSED WHEN OUTSIDE AIR DAMPER IS CLOSED.
S118 USED ON 35 TO 50 TON ENERGY RECOVERY UNITS WITH ENERGY RECOVERY WHEEL (ERW).
REPOSITION A7 ENTHALPY SENSOR FROM ROOFTOP UNIT ECONOMIZER INTO INTAKE HOOD OF THE ERW ROOFTOP UNIT.
REMOVE JUMPER WHEN INSTALLING OPTIONAL LOW AMBIENT SWITCH.

NOTE: THIS DIAGRAM USED ONLY WHEN ECONOMIZER OR NOTORIZED OUTDOOR AIR DAMPERS ARE INSTALLED.

<table>
<thead>
<tr>
<th>KEY</th>
<th>COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>SENSOR, SOLID STATE ENTHALPY</td>
</tr>
<tr>
<td>A130</td>
<td>CONTROL, ERS</td>
</tr>
<tr>
<td>A35</td>
<td>CONTROL, MAIN PANEL LENNOX</td>
</tr>
<tr>
<td>A62</td>
<td>SENSOR ENTHALPY INDOOR</td>
</tr>
<tr>
<td>A71</td>
<td>CONTROL, REMOTE MN POS (OPT)</td>
</tr>
<tr>
<td>B7</td>
<td>MOTOR, DAMPER ECONOMIZER</td>
</tr>
<tr>
<td>B43</td>
<td>MOTOR, EXHAUST DAMPER</td>
</tr>
<tr>
<td>J3</td>
<td>JACK, UNIT ECONOMIZER</td>
</tr>
<tr>
<td>J104</td>
<td>JACK, SENSOR OUTDOOR ENTHALPY</td>
</tr>
<tr>
<td>J105</td>
<td>JACK, SENSOR RETURN AIR ENTHALPY</td>
</tr>
<tr>
<td>J103</td>
<td>JACK, ENTHALPY / DAMPER MOTOR</td>
</tr>
<tr>
<td>J103</td>
<td>JACK, ENTHALPY SENSOR</td>
</tr>
<tr>
<td>J26A</td>
<td>JACK, IAQ INTERFACE</td>
</tr>
<tr>
<td>J26A</td>
<td>JACK, DAMPER MOTOR</td>
</tr>
<tr>
<td>J26B</td>
<td>JACK, ENTHALPY SENSORS</td>
</tr>
<tr>
<td>P3</td>
<td>PLUG, ECONOMIZER BYPASS</td>
</tr>
<tr>
<td>P153</td>
<td>PLUG, ENTHALPY / DAMPER MOTOR</td>
</tr>
<tr>
<td>P193</td>
<td>PLUG, ENTHALPY SENSOR</td>
</tr>
<tr>
<td>S118</td>
<td>THERMOSTAT, DESICANT DEFROST</td>
</tr>
<tr>
<td>S114</td>
<td>SWITCH, EXHAUST DAMPER</td>
</tr>
<tr>
<td>Lennox Model No.</td>
<td>Req’d Curb Height</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>50P3651xH23</td>
<td>24”</td>
</tr>
<tr>
<td>50P3651xH33</td>
<td>24”</td>
</tr>
<tr>
<td>50P3651xH43</td>
<td>24”</td>
</tr>
</tbody>
</table>

ERS Layout

- Clearance 30”
- Clearance 36”
- 012106008 Equipment Support
- 50P3651xH
- 502014724 Roof Curb
- Lennox Unit Outline
- Clearance 60”
- 60.000
- 6.602
- 17.434
- 74.016
START UP INFORMATION SHEET
VOLTAGE - ERS UNIT

Incoming Voltage L1-L2___________ L1-L3___________ L2-L3___________
Running Voltage L1-L2___________ L 1-L3___________ L2-L3___________
Secondary Voltage_______________ C (black) to G (green) Volts*___________
 C (black) to W (white) Volts*___________

* With thermostat calling.

AMPERAGE - ERS MOTORS

Intake Motor: Nominal HP___________ Rated Amps___________ Running Amps___________
Exhaust Motor: Nominal HP___________ Rated Amps___________ Running Amps___________
Wheel Motor: Nominal HP___________ Rated Amps___________ Running Amps___________

AIRFLOW

Intake Design CFM___________ Pressure Drop___________ Calculated CFM___________
Exhaust Design CFM___________ Pressure Drop___________ Calculated CFM___________
Amb. db Temp___________ Return Air db Temp*___________ Tempered Air db Temp*___________
Amb. wb Temp___________ Return Air wb Temp*___________ Tempered Air wbTemp*___________

* Measure after 15 minutes of run time

INSTALLATION CHECK LIST

Model #__________________________ Serial # _______________________
Owner____________________________ Owner Phone #_____________________
Owner Address_____________________

Installing Contractor____________________ Start Up Mechanic________________

- Inspect the unit for transit damage and report any damage on the carrier’s freight bill.
- Check model number to insure it matches the job requirements.
- Install field accessories and unit adapter panels as required. Follow accessory and unit installation manuals.
- Verify field wiring, including the wiring to any accessories.
- Check all multi-tap transformers, to insure they are set to the proper incoming voltage.
- Verify correct belt tension, as well as the belt/pulley alignment. Tighten if needed.
- Prior to energizing the unit, inspect all the electrical connections.
- Power the unit. Bump the motor contactor to check rotation. Three phase motors are synchronized at the factory. If blower motor fans are running backwards, de-energize power to the unit, then swap two of the three incoming electrical lines to obtain proper phasing. Re-check.
- Perform all start up procedures outlined in the installation manual shipped with the unit.
- Fill in the Start Up Information as outlined on the opposite side of this sheet.
- Provide owner with information packet. Explain the thermostat and unit operation.